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I. INTRODUCTION 

Before the advent of the electronic computer, quantum 

chemistry depended to a large extent upon experimental 

knowledge of physical and chemical properties of molecules and 

upon chemical intuition. With the exception of H2, only 

highly approximate non-empirical calculations were possible 

for small molecules, and only semi-empirical calculations for 

larger molecules. The computer brought with it the 

possibility of performing accurate non-empirical calculations, 

commonly referred as ab initio calculations, for polyatomic 

molecules of chemical interest. For a non-specialist the term 

"ab initio" may have too sweeping a meaning. It might give 

the impression that ab initio calculations provide "accurate" 

and "objective" solutions- However, the traditional definition 

of ab initio calculations as introduced by R. S. Mulliken is 

that stated by Allen and Karo^ in 1960, namely; (i) all 

electrons are taken into account simultaneously; (ii) the 

exact non-relativistic Hamiltonian with fixed nuclei is used, 

1 2 1 ^a^b 
H = - $ Z 7; - S + Z + Z , (1.1) 

i i,a '"ia i>j ^ij a,b ^ab 

where the indices i,i refer to the electrons, the indices a,b 

refer to the nuclei with nuclear charges and 2^ and the 

atomic units one bohr and one hartree are used; (iii) all 

integrals are evaluated rigorously. 
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Until the early seventies, ab initio calculations were 

almost exclusively SCF calculations. Over the past fifteen 

years, however, a variety of effective algorithms have been 

developed to yield correlated wavefunctions. Implementation 

and improvement of such algorithms rely on sophisticated 

computer programs. The advances in computer technology and 

availability in the last two decades have enhanced the 

development in computational quantum chemistry. 

The capability of performing accurate non-empirical 

calculations has bridged the gap between experimental and 

theoretical chemistry and experimentalists have begun to look 

to theoretical predictions for directions in their research. 

Before a theory can produce meaningful results for the 

experimentalists, it has to go through three stages: (i) 

development of the mathematical relationships, (ii) 

implementation of the algorithm, and the corresponding 

computer programs and (iii) application of the programs to 

specific cases. Many algorithms and systems of computer 

programs have been developed over the years. The Hartree-Fock 

<HF) approximation containing a single determinant, known as 

the self-consistent-field (SCF), wavefunction has become 

almost standardized. The essence, if not the detailed theory, 

of different systems can be found in many quantum chemistry 

2-3 
books and references therein. 

The Hamiltonian (1.1) Inherently neglects the 



www.manaraa.com

3 

relativistic effects. The relativistic corrections calculated 

by Fraga et al.* using the Dirac-Breit-Pauli-Hartree-Fock 

method range from -70 microhartree for helium to -130 

millihartree for neon to -1020 hartree for mercury. 

Computationally, the estimation of relativistic effects in 

molecules is difficult. Fortunately, the largest 

contributions to the relativistic energy are due to inner 

electronic shells. For the lighter atoms, there is sound 

reason to assume that the total atomic relativistic energy is 

almost independent of the atomic electronic state and the 

chemical environment in molecules, which implies cancellation 

of relativistic effects in chemical processes. Experience 

shows that neglecting the relativistic effects, especially for 

the first- and second-row elements, are indeed usually 

justif icible. 

The more crucial sources for the shortcomings of 

theoretical calculations in chemical applications are 

inadequate basis sets and correlation effects, i.e. the 

neglect of the instantaneous repulsions between electrons. 

The difference between the Hartree-Fock energy and the exact 

non-relativistic energy of a particular system is usually 

considered as the correlation energy. As a rule, it is a 

small percentage of the total energy of an atom or molecule. 

For example, for fluorine atom, the correlation energy, 0.4 

hartree, is only 0.4% of the total energy -99.8053 hartree^. 
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The small percentage translates however into an actual value 

of more than 10 eV which is considerably larger than the 

experimental dissociation energy of of 1.7 eV^. 

Much effort has been spent over the past two decades to 

search for optimal basis sets. An overview of different basis 

set types is given by Carsky and Urban^. All calculations 

reported in this work use the contracted even-tempered 

7 8 
Gaussian basis set developed by Raffenetti , , Sardo and 

9 10 
Ruedenberg , Feller and Ruedenberg , Schmidt and 

Ruedenberg^^. Polarization functions were also included 

whenever appropriate. 

Total recovery of the correlation effect seems impossible 

at this time. However, from the chemical point of view, it is 

the relative variation of the energy surface of a chemical 

system which is of interest rather than the absolute values of 

its energies. Upon molecule formation and in chemical 

tcau wu. wiia r wii u-jf v wx ui&c uwi. £. cxauxwii ci&CL y \_iicLi ly c a • xiitaa f 

the important goal of quantum chemical research is to identify 

this changing part and seek for mathematical formulations to 

recover it in a computationally feasible manner. A useful and 

quite successful model of this type which has recently been 

formulated to this end is the FORS model. 

A Full Optimized Reaction Space (FORS) wavefunction is 

defined as the optimal configuration interaction wavefunction 

in a full space of N-electron configurations where all 
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orbitals are optimized, so that <Y|H|Y> is an extremum. The 

dimension of such a full configurational spaces may be quite 

large. The definition and generation of full configurational 

reaction spaces are outlined in Chapter II. A procedure is 

developed for generating all Symmetry-Adapted Antisymmetrized 

Products (SAAPs) which span such full configuration space and 

the algorithm described has been implemented into a computer 

program labelled SAAP. This code has been incorporated as 

12 
part of the ALIS program package . In Chapter III, 

multi-configuration self-consistent-field (MCSCF) calculations 

using FORS wavefunctions are reported for the low-lying 

electronic states of aliéné at planar geometries. This 

provides the ground work for study of torsion and bending in 

aliéné. 

Although the FORS model provides an unambiguously general 

and unbiased approach to obtain reliable quantitative results 

cn potential energy surfaces involving polyatomic molecules, 

it still fails to recover all correlation energies completely 

and, therefore, requires further refinement. Two possible 

augmentations are discussed in Chapters IV and V. In Chapter 

IV, the theory of a semi-empirical correction method termed 

IntraAtoraic Correlation Correction (lACC) is developed and 

quantitative results of its application are discussed. In 

Chapter V, improvements of FORS wavefunction by the systematic 

inclusion of additional configurations involving orbitals 
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outside the valence space are investigated. Such calculations 

elucidate the origin of the unrecovered correlation effects. 
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II. GENERATION OF THE FULL REACTION SPACE 

A. The Full Optimized Reaction Space Model 

1. Objective 

The model of Full Optimized Reaction Space (FORS) was 

first introduced by Ruedenberg, Sundberg and Cheung^^ and 

further developed by Ruedenberg, Schmidt, Gilbert and 

14 15-20 
Elbert . It has been applied to a number of reactions 

There are other MCSCF models with restricted configuration 

selections such as the Optimized Valence Configuration 

(OVC)^^, the Hartree-Fock plus Proper Dissociation (HF + 

PD)^^, the Separated Pair Independent Particle (SPIP)^^r the 

24 
Generalized Valence Bond Configuration Interaction (GVB CI) 

25 
and a recent calculation by Kirby-Docken and Liu . The FORS 

model is unique in its attempt to combine consistently the 

concept of a full valence space with the principle of orbital 

optimization and to explore systematically the implication of 

such a framework. The concept has been generalized by Roos 

and co-worker^° to the "Complete Active Space Self-

Consistent-Field (CASSCF)" procedure which has also proven to 

be successful. 

The FORS model describes the electronic structure of a 

molecule in terms of the best wavefunction that can be 

obtained by a superposition of all those configurations which 

are generated by all possible occupancies and couplings from a 

"formal minimal basis" of valence orbitais on the constituent 
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atoms. These configurations span a "Full Reaction Space", and 

MCSCF optimization^^ of the orhitals in terms of an extended 

set of quantitative basis orbitals determines the "Full 

Optimized Reaction Space". A detailed description of the 

model and its application, and an analysis of the resulting 

molecular electronic wavefunction are given by Ruedenberg, 

Schmidt, Gilbert and Elbert^^. 

For practical application of the FORS approach, an 

efficient general method of generating all configurations 

spanning the full configuration space for a specified set of 

orbitals is essential. The formulation of such a procedure 

and its implementation is discussed in the present chapter. 

2. Configurational basis for the full reaction space 

The N-electron function space of the FORS model is 

—k \ V~. TT  ̂ -1 «T f C  ̂w A  ̂ 4— ̂  A vs ̂  4- V O w» i ^ 11 ^ y et W A. fmf à C^-L, 1 W -A. O V ILimC t i. WVA U» «3 

(SAAPs) which are configurations of the form: 

?%^(1, n) = 1,. . . ,n)©^"(l, n) } (2.1) 

where is a product of space orbitals 

$, (1 ,n) = f, ,(l)f.„(2)...f, (n) , (2.2) 
k. kl k2 kn 

and 0 " is an eigenfunction or the total spin (S") and its z 
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component (S^). We choose in particular the Serber-type spin 

functions, making use of the construction process developed by 

Ruedenberg^^, Salmon and Ruedenberg^^, Salmon et al^^. The 

antisymmetrizer A is defined as 

A = Z (-l)^P 

where d is the number of doubly occupied orbitals. 

The MO s fj^^ are called "configuration generating orbitals 

(CGOs)". In the FORS model, these CGOs are divided into two 

groups: (i) a set of "generalized core" or "closed-shell" 

orbitals, all of which are doubly occupied in every 

configuration, and (ii) a set of "open-shell" or "reactive" 

CGOs whose occupation numbers are less than two in at least 

one configuration. The space orbitals fare chosen in 

various ways from one set of orthonormal spatial molecular 

orbitals 0^, 0^, which may or may not be symmetry 

adapted. A basis for the full reaction space is obtained by 

making for f.^, f^^, f^?, f^^ all possible choices out of 

the set 0,, 02' ' ..., 0^ with occupation numbers 0, 1 or 2, 

compatible with the spatial symmetry of ¥, and by associating 

with each orbital product so obtained all possible spin 

functions . . . yielding non-vanishing 

SAAPs. 

The of Equation (2.1) obtained in this manner merely 
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define a certain formal structure of the configuration space 

in terms of the orthonormal set of the CGOs. Determination of 

the CGOs by MCSCF optimization^^ completely determines the 

Î. . An important feature of the full reaction space is that 
Jv y 

it is invariant against any non-singular, in particular, 

orthogonal transformation among the open-shell CGOs and 

against a similar transformation among the core CGOs. 

3. Group theoretical considerations 

Each SAAP is generated from a product of orbitals which, 

by virtue of the Pauli principle, can only have occupation 

numbers 1 or 2. Furthermore, in case the molecule has spatial 

symmetry, each SAAP can be required to belong to the 

irreducible representation (irrep) of the state to be 

calculated. If each orbital in turn belongs to a particular 

irrep, the total symmetry of a SAAP is obtained by taking the 

direct product of the occupied orbitals. Only the case of 

point groups with non-degenerate representations (i.e. the 

group D2j^ and its subgroups) and that of the groups C^ and 

are discussed here, since only for these have automated 

computer programs been constructed. A program, called SAAP, 

has been developed to generate a SAAP basis for the full 

reaction space of a given number of orbitals and electrons. 

12 
It has been incorporated into the ALIS program package - The 

program involves two major steps: (i) the possible 
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distributions of the valence electrons over the irreps are 

determined and (ii) all possible SAAPs are formed for each of 

these distributions. A description of the algorithm of the 

generation procedure is given in the following sections. 

B. The Point Symmetry Group D2j^ and its Subgroups 

1. The spatial symmetry of orbital products 

The irreps of namely A^, B^^, B^^, Bg^, 

B^g, A^ can be associated with the binary numbers 000, 001, 

010, Oil, 100, 101, 110, 111 which correspond to the digits 0, 

1, 2, 3, 4, 5, 6, 7. There are three reflection planes in the 

symmetry and each bit in the binary representation can be 

thought of describing the symmetry behavior with respect to 

one of the reflection operations. Combination of these 

operations uniquely defines the eight irreps in the group. 

The other non-degenerate point groups, namely r ^2v' 

Cg, C^, Cg and C^, are subgroups of D2^ and the binary 

representation also applies to them. Table 2.1 lists the 

decimal numbers associated with the irreps for all these 

groups. 

For any one of these groups, the symmetry of an orbital 

product is simply obtained by combining the set of binary 

numbers corresponding to the irreps of the individual orbitals 

by means of the "Exclusive OR (XOR)" operation. For example. 
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XORiK 001),(101),(111)3 = (Oil) (2.3) 

corresponds to 

® ̂ 2, ® = ®lg • '2.4) 

Table 2.1. The correspondence between the elements of the 
point group and binary numbers 

Point Irreducible Digits equivalent to 
group representation binary numbers plus 1 

°2h \'®3u'®2u'®lg'®lu'®2g'®3g"^u 1,2,3,4,5,6,7,8 

^2h Ag'Bg'Bu'Au 1,2,3,4 

Sv '^1'^2'^2 
1,2,3,4 

°2 •^'®l'®2'®3 1,2,3,4 

^2 
A,B 1,2 

:i ^g'Au 1,2 

Cs A' ,A" 1,2 

Cl A 1 

Suppose one has an orbital product containing n(a) 

orbitals of representation a, for several one-dimensional 

irreps, then it Is seen that any even occupancy yields 
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Ag = (000) symmetry, so that only the irreps occupied by an 

odd number of electrons have to be taken into account. For 

example, if one has a product of ten orbitals with n(OOl) = 3, 

n(lOl) = 2 and n(lll) =5, then the irrep of product is simply 

X0R€(001),(111)} = (110) 

It is furthermore apparent that the symmetry of any orbital 

products is determined by the number of singly occupied 

orbitals only. 

2. Determination of distributions 

Suppose now that there are A one-dimensional irreps a = 

1, 2, A and that among the set of configuration 

generating orbitals ^ from which the orbitals in 

Equation (2.2) can be chosen, there are m^ orbitals belonging 

to the irrep a. then = 2m^ is the maximal electron 

occupancy of the irrep a. The orbital products that can be 

formed from the set (and hence the SAAPs that are 

the basis of the Full Reaction Space) can now be grouped into 

subsets, such that all configurations in one subset have the 

same number n^ of orbitals in each irrep a. These subsets are 

called here "distributions of orbitals among irreps". Any 

particular distribution D is thus characterized by a set of 

irrep occupancies 
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D Ti^ f # * # f ^ A ̂ * 

If N is the total number of electrons one clearly must have 

A 
Z v„ I N . (2.5) 
a=l ** 

It is useful to determine first all possible distributions for 

the desired irrep of the state to be investigated. 

Given the number of available orbitals in each irrep and 

the total number of electrons, the generation of all possible 

distributions of a particular symmetry is a combinatorial 

problem. It is solved here by a sequence of steps which is 

best illustrated by an example. Suppose that there are eleven 

electrons and two orbitals of symmetry 1, three orbitals of 

symmetry 2, one orbital of symmetry 3 and two orbitals of 

symmetry 4, so that = 4, = 5, = 2 and = 4, then 

the first distribution formed is 

= D(n^ = v^ = 4, 11^ = ̂ 2=6, n2 = l, n^ = 0) 

The other distributions are then generated from by moving 

one electron at a time in the sequence illustrated by Table 

2.2. The flow diagram of Figure 2.1 displays the sequence of 

logical steps of this process. Only distributions which 

cx 

A 
Z 
cx.= l 

n^ = N 
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Table 2 . 2 .  Sequence of distributions generated by SAAP with 
eleven electrons, v^=4, ^2=6, ̂ ^=2 and v^=4 

'̂ 1̂ 2'̂ 3'̂ 4 '̂ I'̂ 2̂ 3'̂ 4 '̂ I'̂ 2'̂ 3'̂ 4 

4 6 1 0 3 6 0 2 2 4 2 3 

4 6 0 1 3 5 2 1 2 4 1 4 

4 5 2 0 3 5 1 2 2 3 2 4 

4 5 1 1 3 5 0 3 1 6 2 2 

4 5 0 2 3 4 2 2 1 6 1 3 

4 4 2 1 3 4 1 3 1 6 0 4 

4 4 1 2 3 4 0 4 1 5 2 3 

4 4 0 3 3 3 2 3 1 5 1 4 

4 3 2 2 3 3 1 4 1 4 2 4 

4 3 1 3 3 2 2 4 0 6 2 3 

4 3 0 4 2 6 2 1 0 6 1 4 

4 2 2 3 2 6 1 2 0 5 2 4 

4 2 1 4 2 6 0 3 

4 12 4 2 5 2 2 

3 6 2 0 2 5 1 3 

3 6 1 1 2 5 0 4 
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yes no 
i>v ? 

N/no \/ yes 

OUT 

yes 
a=A? a=0? 

no 

n >1? 

- » 

Yyes 

a=a-l 

i=N, a=l 

a=a-l 

n =v 
a a 
i=i-v 

I 
oi=a+l 

distribution 
has been 

formed. Its 
symmetry is 
tested. If 
acceptable, 
distribution 
is added to 

list. 

N = total number of electrons 
a = label of irreducible representations 
A = total number of irreducible representations 
v = maximum number of electrons in irrep oc 

= number of electrons in irrep a for a given distribution 
i* = running counting index representing the number of 

electrons to be distributed 

Figure 2.1. Flow chart for generation of distributions 
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satisfy the set of Equations (2.5) are kept. In TaJDle 2 . 2 ,  

all distributions obtained in this manner are listed. If the 

molecule belongs to a symmetry other than then the 

symmetry of each distribution is tested after it has been 

formed by the XOR operation discussed above and, only if it 

has the desired symmetry, will it be added to the list. 

3. Formation of SAAPs 

The first step in generating the individual SAAPs is to 

find all possible orbital products for each of the 

distributions found by the procedure described in the 

preceding section. If the distribution is Dtn^ngHg.-.n^), 

then it can be shown that the total number of orbital products 

which can be formed is given by 

A 
. .Hj^) = ÏÏ P (n ) (2.6) 

- - " a=l ^ -

where 

Pc/"*) 

with 

P^(n^) = number of possible orbital products of n^ 

electrons in m_ orbitals 

= f M I " I 
Ik ) In^-kj 
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m a (= ^0^2) = number of available reaction orbitals 

belonging to irrep a 

n = number of reaction electrons occupying irrep cx 

in the distribution 

k = number of different orbitals being occupied in 

irrep a in a given product 

n^ - k = number of orbitals being doubly occupied in 

irrep a in a given product 

C(n^+l)/23 = the largest integer <. (n^+l)/2 

minimum of (ni , m^) 
a a 

To find the PCn^ng...) products explicitly for a given 

distribution, one first generates separately all P^^n^) 

products for the n^ orbitals in each irrep a. To do this, one 

can use exactly the same algorithm as the one depicted by the 

flow chart in Figure 2.1, if one makes the following 

specifications: (i) is substituted for N, the total number 

of electrons; (ii) j = orbital index is substituted for a, the 

irrep index; (iii) j = 1, 2, .m^ is substituted for a = 1, 

2, ..., A; (iv) the value 2 = maximum number of electrons in 

any one orbital is substituted for ^2' •••' the 

maximum number of electrons in each irrep; (v) the actual 

occupation of orbital j, namely 0, 1 or 2, is substituted for 

n^, the irrep occupation. Furthermore, the symmetry check is 

omitted. After all products have been formed for each irrep. 
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the various combinations between the products from different 

irreps yield all possible total products for a given 

distribution. 

When the orbital products, have been found, the 

individual SAAPs can be determined. In any given orbital 

product the doubly occupied orbitals are listed first and the 

singly occupied ones thereafter, both separately in order of 

increasing index number. The number of individual SAAPs which 

can be formed from one product is equal to the number of spin 

functions y = 1, 2, ..., that can be combined with it 

(see Equation 2.1). This number depends upon the total spin 

quantum number S, which is determined by the state to be 

calculated and by the number of singly occupied orbitals in 

the product, say T. It can be calculated using the branching 

34 
diagram and is given by the formula 

r(S, T )  =  
lT/2 + Sj 

T 

, T/2 + S+lJ 

(2S+1> T! 

(T/2 + S+1)i (T/2 - S)i 
( 2 . 8 )  

This number is all that is needed for identifying the SAAPs. 

This is because each SAAP is completely characterized by the 

orbitals it contains, their occupancies and the index y of its 

spin function. The explicit forms of the individual spin 
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functions associated with the possible indices y = 1, 2, 

r(S,T), are generated in another part of the ALIS program 

12 
system 

We were not cible to find a formula predicting the number 

of orbital products having a certain number of singly occupied 

orbitals without explicitly generating them. For this reason, 

it was not possible to calculate the number of possible SAAPs 

without generating the individual space orbital products. The 

program has an option of going through the entire procedure 

without storing the information characterizing the individual 

SAAPs, but just counting the total number. 

C. The Point Symmetry Groups and 

1. Irreducible representations 

Consider a linear molecule lying on the z-axis. The 

symmetry transformations of such a molecule are of two types: 

(i) rotations C(w) about the z-axis by any auigle u and (ii) 

mirror reflections a„ in any plane containing the z-axis. 

These symmetry transformations form the group C_,. Every 

-1 
rotation C(U))  and its inverse C (w) = C(-UJ)  form a class. 

But all reflections belong to a single class. 

The irreps of can be obtained by considering the 

effect of typical class elements C(u) and a^{xz) on a 

spherical harmonic Y, (6,6): 
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C(w)Yi^(8,$) = , (2.9) 

and. 

Gv(%=)?lm(G'*) = = Yi_m(8,$) . (2.10) 

The eigenvalue m is the magnetic quantum number of the complex 

atomic orbital containing It is apparent that, for 

m # 0 the spherical harmonics (Y, ,Y, ) form the basis for 
im i-m 

a two-dimensional representation of C^. It can be shown to 

be irreducible. In matrix form, one has 

0 
C(w)(?im'?l-m) - (?]m'?l-m) ( ^ ^imw] 

and 

fO 1 

U oj 

the characters are therefore 

x'^^(C(w)) = e + e"3^^ = 2 cos mw 

( 2 . 1 1 )  

and 

=  0  .  ( 2 . 1 2 )  

A list of characters for the first few elements for the point 

group is given in Table 2.3. When m = 0, it is clear 

that Y,Q form bases for the identity representation. There 

exists however another one-dimensional representation. If $ 
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Table 2.3. Character table of 

E 2C(w) ooa^ 

Z"*" 1 1 1 

Z 1 1 -1 

n 2 2cosu) 0 

A 2 2cos2w 0 

4 2 2cos3uj 0 

is a basis for an one-dimensional representation, then one 

must have 

a„ ̂  = a x!) , (2.13) 

and since 

= identity , (2.14) 

it follows that 

 ̂= â x}) = â $ , (2.15) 

so that 

a = ± 1 . (2.16) 

Thus, there exist two types of basis functions denoted as t{)^ 

and where 



www.manaraa.com

23 

% and i()_ = -vi)_ . (2.17) 

Under a rotation C(u)), $_ behaves in the same manner as 

C(u) = t})̂  and C(w) . (2.18) 

The function is a basis function for the identity 

representation denoted by , while the function il)_ is a basis 

function for another one-dimensional representation denoted by 

E which does not occur for one-electron functions. Its 

character is also included in Table 2.3. 

If a linear molecule also possesses an inversion centre 

then the appropriate symmetry group is 

' C.V • <2-15' 

Its character table is readily obtained from that of and 

given in Table 2.4. 

2. Orbital symmetries 

Complex symmetry adapted orbitals of linear molecules can 

be expressed as linear combinations of atomic orbitals located 

at various points on the molecular axis and have the same 

magnetic quantum number m. They have therefore one of the 

following forms: 
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Table 2.4. Character table of 

Dooh  ̂ 2C(w) ooô  i 

:g 1 1 1 1 

Z "  1  1  - 1 1  
9 

n 2 2cosw 0 2 
9 

A 2 2cos2u) 0 2 
9 

•  • •  • • •  • • •  • • •  • •  

z; 1 1 1 -1 

Z" 1 1 -1 -1 

n 2 2cosu) 0 -2 
u 

2 2cos2w 0 -2 
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^0 = : fgCrrZ) : a orbitals 

^1 = = fj^(r,z) exp(lO) orbitals 

^-1 
= fj^(r,z) exp(-i$) : ir_ orbitals 

^2 = fgtr.z) ezp(i2$) orbitals 

^-2 
= fgtf'Z) exp(-i2$) : S_ orbitals 

~ exp(im$) 

= f„(r,z) exp(-iin0) 
—m m 

In general, there will be available several orbitals of each 

symmetry: 

I icr> ,  

!]?+>, I jiT 

|k5+>, I kg 

... etc. 

i = 1, 

>, j = 1, 

>, k = 1, 

2 , • • • , m ( ) 

2 y m(?) 

2, ..«, m(S} 

The orbitals and |j%_> have the same factor f(r,z) and 

together, span the irrep ir of The orbitals |jT^> and 

on the other hand, have different radial factors and 

do not span any irrep together. The same holds for the 

indices i, k etc. 

It was shown in the preceding section that the class 

introduces a differentiation of the symmetry classification 

(+,-) only for the one-dimensional representation Z, but not 
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for any of the two-dimensional representations. This is 

related to the fact that the character of vanishes in the 

two-dimensional irreps for m > 0. Since on the other hand, 

orbitals cannot have Z symmetry, as mentioned earlier, the 

class can be disregarded in discussing the symmetry 

behavior of individual orbitals, i.e. the group is adequate 

to identify the orbital irreps. However, within the group 

the orbitals 4»^ and belong to different one-dimensional 

irreducible representations when m f 0. Therefore, if one 

works with complex orbitals, the situation is similar to 

in that all orbitals can be considered as belonging to one-

dimensional irreps. In C^, these are labelled by 

0, +1, -1, +2, -2, +3, -3, etc. 

In they are labelled by 

Og, Ou, +lg, +lu, -Ig, -lu, +2g, +2u, -2g, -2u, etc. 

3. Determination of complex orbital products 

Since the complex orbitals can be treated as belonging to 

one-dimensional representations, one can use the procedure 

described for also in the present case. First, one 

determines the possible distributions of electrons over the 

one-dimensional orbital irreps, then one finds all possible 
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orbital products for each distribution. Finally, one could 

combine each orbital product with the various spin functions 

appropriate for the number of singly occupied orbitals in the 

product. The only part which is different for is the 

symmetry testing. 

From the form of the orbitals, it is apparent that any 

one orbital product can be written as 

N 
P = F(r^r2...rQ,z^Z2—z^) expCi(Z 

k=l 

and also that 

N 
C(w) P = P expCiu)(Z m )] 

k=l ^ 

so that P belongs to the one-dimensional irrep with M = 

of C^. Thus, in generating all possible distributions 

follows exactly the combinatorial procedure outlined in 

flow chart of Figure 2.1. The symmetry test is now an 

examination of the total magnetic quantum number Z m,,. 
k 

if this quantity is equal to the value M of the state which is 

to be calculated, will the distribution be kept. In case that 

M is non-zero, the state is doubly degenerate in , so that 

the wavefunction for +M and -M have the same energy. For this 

reason, the program tests only on values M >. 0. 

If the symmetry is then there is an additional test 

( 2 . 2 0 )  

N 
(Z m ) 
k ^ 

one 

the 

Only 
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of the g/u character of the product. For g symmetry, there 

must be an even number of u orbitals and for u symmetry, there 

must be an odd number of u orbitals. 

After the distributions have been found, all possible 

orbital products of complex orbitals are formed for each 

distribution by exactly the same procedure as was described in 

Section II.B.3 for the case of D2^ symmetry. 

4. Determination of real orbital products 

From the products of complex orbitals just found, one can 

form complex SAAPs by combination with the appropriate spin 

functions 0^^. Such SAAPs belong to irreps of and D , y OOV OOn. 
2 

and are eiaenfunctions of S and S . However, most molecular 
z 

programs, including ALIS, use only real orbitals. It is 

therefore necessary to determine those real SAAPs which are 

required to express each complex SAAP having the appropriate 

•Î w o r*̂  
-oov ""œh" 

Now any product of complex orbitals such as considered 

above can be expressed in terms of real orbitals by expanding 

the right hand side of the equation 

P = n fk(r%,Zk) exp(imk*%) 
k 

= n fktfk'Zk) (cos Zm^*^ + i sin (2.21) 
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in terms of a real and a complex part 

P = F» + i . (2.22) 
^ y 

It is evident that P^ and P^ are linear combinations of 

products of real orbitals containing the factors cos(m$) and 

sin(m$) instead of the complex factors exp(im$) and exp(-im$). 

It should be noted that, P^ contains only products having an 

even number of factor sin(md)) , and that P^ contains only 

products having an odd number of factor sin(m&). It is 

therefore straightforward to identify all those products of 

real orbitals which are needed to express or P^, for any 

given product P of complex orbitals. 

When S m, does not vanish, P and P span one two-
k X y 

dimensional representation of which is identical to that 

spanned by P and its complex conjugate 

P* = ÎI exp(-im^O^) . (2.23) 

Consequently, for M f 0, one can choose only to consider 

those real products which are required to expand P^. However, 

if Z m. vanishes, then P belongs to the one-dimensional irrep 
+ ^ X 
Z , whereas P^ belongs to the one-dimensional irrep Z and 

thus the real products needed for P^ or Py must be considered, 

a* 
depending upon whether the required symmetry is Z or Z . 
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Consider for example, the product 

P = |l*+>2|2*+>|lS_>|2S+> . (2.24) 

It has M = Z m. = 1+1+1-2+2 =3^0 and only its real part P 
i * 

is considered. It contains the following twelve real products 

|2,x>|lS:> 128,̂  12, 11S^>|2S^> 

|2*y>|lGy> 126,̂  I2*y> |lSy>|2S^> 

i,x>: |2iry>|lS^> l2Sy> Il*y>2 |2*y> ilS^>|2Sy> 

|2ir^>|lSy> I25y> Il*y>2 12V I16y>|25y> 

l'x>l l*y>|2,y>| IG;)! 25:> HV" l'y>l 2T^>|15^>126y> 

IV i l,y>|2,2>l lSy>l 2Sx> nvi lWy>l 2*y>|16y>|26y> 

(2.25) 

where the notations 

= f\(r,z) cos <î> , ir„ = f,(r,z) sin $ , 
X X y J, 

= fgfTfZ) cos 20 , = fgtrfZ) sin 2$ 

have been used. On the other hand, the product 

F = !ir_^>^iS_> (2.26) 

has M = 2 m. = 1+1-2 = 0. If the desired syinmetry is 2 , then 
i ^ 
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the complex part is required, and the real orbital products 

(2.27) 

are relevant. 

5. Formation of real SAAPs 

Each of the real products found by the procedure of the 

preceding section is combined with all spin functions 

appropriate for the number of singly occupied orbitals to form 

real SAAPs. Thus, a number of real SAAPs are derived from 

each one product of complex orbitals. 

In this context, it is to be noted that the number of 

singly occupied orbitals which are relevant for the choice of 

spin functions is not the number of singly occupied orbitals 

found in the individual real orbital products, but the number 

of singly occupied orbitals occurring in the complex orbital 

product from which the real products are derived. Thus, e.g., 

there are three singly occupied orbitals in the complex 

product if Equation (2.24). Consequently, assuming a doublet 

state (S=l/2) say, all twelve real orbital products of 

Equation (2.25), even those containing five singly occupied 

orbitals, have to be combined only with the two doublet spin 

functions corresponding to three electrons. Thus, the orbital 

product of Equation (2.24) yield twenty-four real doublet 
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SÀAPs which are required to express the real parts of the two 

complex SAAPs that result from combining the two three-

electron doublet spin functions with the complex product of 

Equation (2.24). 

In this manner, all necessary real SAAPs are deduced from 

every previously determined complex orbital distribution. 

This procedure generates all those SAAPs, made from real 

orbitals belonging to irreps of or which are required 

in the Full Reaction Space for the construction of N-electron 

spin eigenfunctions belonging to the desired irreducible 

representation of or and having the desired spin 

multiplicity. Those linear combinations of these SAAPs which 

form bases for irreducible representations of or 

obtain by diagonalization of the Hamiltonian matrix during the 

molecular calculation. 

D. Additional Features of the Program SAAP 

There is an option in the program SAAP which allows to 

generate all excitations of a certain type (i.e. single, 

double, triple, etc) out of the Full Reaction Space into a 

space of additional "external" orbitals. For example, in the 

case of double excitations, the program will generate all 

possible occupancies of external orbitals by two electrons. 

Each of these is then combined with all distributions of (N-2) 

electrons over the FORS orbitals. The symmetry test is of 

course applied to all N electrons. 
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The program also has the option that additional specified 

distributions of electrons over the available orbitals can be 

included in the configuration list by explicit input. This 

option allows for deletion or addition of configurations from 

or to the Full Reaction Space. It also makes possible the 

construction of SAAPs for symmetry groups with multi

dimensional irreducible representation by providing 

appropriate distribution as explicit input. 
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III. POLARIZED NONVERTICAL EXCITED STATES: 
A FORS STUDY OF AND PLANAR ALLENE 

A. Introduction 

The aliéné excited states investigated in this chapter is 

an application of the FORS model. The location and 

characteristics of minima on excited state potential energy 

surfaces often are controlling features in photochemical 

reactions^^ . It is essential for photochemists to have a 

detailed understanding of the electronic nature and dynamics 

of molecules at these minima if mechanisms and reactivity are 

to be understood. For many organic molecules containing ir 

bonds, the location of minima has long been accepted to occur 

at 90° twisting, however, it was only recently recognized that 

strong excited state polarization, approaching zwitterionic 

41 
character, will exist at this nonvertical geometry . Salem 

termed this unusual phenomenon "sudden polarization"; however, 

it now seems, at least for ethylene, that the degree of 

42 
suddenness depends critically on the reaction path . This 

polarization has been the subject of numerous theoretical 

17 41-43 
studies ' and its existence seems no longer 

controversial. Polarized nonvertical excited states have been 

suggested as intermediates in a variety of organic 

4.4. 
photoreactions ' which include isomerizations and addition 

of protic solvents to ir bonds, although definitive 

experimental evidence is difficult to obtain and interpret. 
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Aliénés, like most alkenes, have long been believed to 

twist to planar geometries in their lowest singlet and triplet 

45 
excited states . Obvious photochemical manifestations of 

this are the facile photoracemization and ohotoresolution of 

chiral aliénés*^. As one example, it has been observed that 

optically active 1,2-cyclononadiene undergoes rapid 

racemization on direct irradiation, in addition to 

isomerization to a bicyclic cyclopropene^^. 

The first theoretical study in which the involvement of 

planar excited states in aliéné photochemistry was explicitly 

considered was an often overlooked but insightful paper by 

45 
Borden . Based on Pariser-Farr-Fople calculations, Borden 

concluded that excited state twisting in both and should 

be facile and that the lowest singlet D2^ state is open-shell 

(Ay), with two low-lying closed-shell excited states. This is 

41 
precisely the situation required for "sudden polarization" 

For thermal isomerization, the intermediacy of planar 

geometries has been the subject of a number of ab 

48 49a-h 49i 
initio ' and semi-empirical theoretical studies. 
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which have led to a wide range (48-82 kcal/mol) of predicted 

values for the barrier to rotation in aliéné. In mamy of 

these studies, energies of the low-lying states, ^A^, 

l^A^ and Z^A^, were calculated, however, the major point of 

interest was the ground state rotational barrier. In the most 

definitive study, Seeger et al. have shown that this ground 

state barrier should occur at a bent (€2^) geometry^^^, and an 

open-shell ^A^ state. More recently, Krough-Jespersen has 

recalculated this barrier using extended basis set geometry 

49h 
optimization and with inclusion of correlation energy . A 

value of ca. 50 kcal/mol is predicted in both studies, which 

is in good agreement with estimates from experimental work of 

50 
Roth ajid co-workers 

B. Electronic Structure of D2^ and Planar Aliéné 

Figure 3.1 shows schematic ir molecular orbitals for 

planar aliéné, and their correlation on passing from D2-̂  to 

On inplane bending, the 2b2^ nonbonding orbital 

(correlating with 6a,) acquires significant hybrid 

character"^®and is lowered in energy, while the Ib^g 

nonbonding orbital (correlating with la^) is raised somewhat. 

As it is shown below, the resultant orbital crossing on 

bending has potentially important photochemical consequences, 

since this defines the existence of two excited state minima. 

Population of these orbitals gives rise to low-lying 

states which have either pronounced diradical (D) or 
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Figure 3.1. Molecular orbitals of planar aliéné 
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zwitterionic (Z) character. For D 
2h' these are: 

Here represents the four a^., one three b^^ and 

one bg^ closed-shells comprising the a molecular framework. 

In this case, ... represents five a^^ and four bg closed-shells 

of the a skeleton. 

It is readilv oredicted that the ooen-shell states (A or 
- - u 

A2 symmetry) will be nonpolar, while the four closed-shell 

states (A_ or A, symmetry) will be strongly polarized in 
y -I 

specific planes, as represented by structures 1-4 below 

(inplane orbital occupation shown). 

C. Geometries and Basis Sets 

FORS calculations were performed at three points: the two 

relative minima (180® and 102.8°) and the intermediate point 

(135.4°); these are shown below as I, II and III. 

For C 2v' 

...(Ib^)^(6a^)^{la2)^ 

. . . (lbj^)^(6a^)^ 

. . . ( Ibj^ ) ̂ ( la^ ) ̂ 
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It is important to recognize that 180® eind 102.8® 

correspond to excited state minima; remaining state energies 

will be vertical with respect to these. 

The atomic basis used in the calculations was of double 

zeta quality. This consisted of a 10s/5p set of even-tempered 

Gaussian primitives^^ generally contracted to 3s/2p on carbon, 

and a 4s set of Gaussian primitives scaled by 1.2 and 

generally contracted to 2s on hydrogen. 

In the FORS wavefunction for each planar aliéné state, 

inner shell and a framework orbitals are held to double 

occupancy, while the remaining four electrons are distributed 

among the four ir-type orbitals shown in Figure 3.1. This 

leads to eight SAAPS for the zwitterionic states, and four 

SAAPs of like symmetry for the diradical at each geometry. 

The small number of configurations permits optimization for 

each state separately in an MCSCF calculation. The a skeleton 

can then readjust to the varying ir electron distributions. 

These configurations also include the important near-

degeneracy correlations associated with ? ̂  double 

excitations (up-down correlation). Thus, the FORS-MCSCF 

calculations may be expected to yield reliable estimates for 

electronic distributions and excitation energies. For 

comparison, SCF calculations also were performed for each 

state. 
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D. Results of Calculations 

SCF and FORS-MCSCF total energies and excitation energies 

for and states of planar aliéné at geometries 

I-III are listed in Table 3.1. Each, energy listed is from an 

individual optimization for that particular state. Orbital 

occupation numbers for the two minima are given in Table 3.2, 

gross Mulliken populations in Table 3.3 and molecular dipole 

moments are listed in Table 3.4. For comparison, we note that 

absolute SCF energies for the l^A^ (Dg^) and l^A^ ^^2v^ states 

are within 0.04 hartree of the previously reported 6.31G* at 

50 
the same geometries . Energies given are the appropriate 

roots of SCF or MCSCF calculations. Figure 3.2 plots the 

relative energies. 

Polarization in S^ is well-described by the simple 

zwitterionic structures 1 and 3, since these configurations 

dominate the MCSCF wavefunctions. This is reflected in the 

occupation numbers, Mulliken populations and dipole moments. 

Inspection of Table 3.3 shows that the states have 

balanced a and ? electron distributions- while states are 

strongly polarized. The localization of central carbon 

polarization in orthogonal a and TT molecular orbitals is 

fundamentally different from a twisted TT bond (e.g. ethylene) 

in which positive or negative character is associated with 

different carbons. Additionally, this a/ir polarization 

permits significant minimization of effective charge 
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Table 3.1. Energies of electronic states of planar aliéné: 

Geometry State No. of 
SAAPs 

Energies (in hartree) 
MCSCF SCF 

'2h 

II 
2v 

(135.4 ) 

III C 
2v 

(102.8°) 

2 \ '"z?' 

l^A^ (^Zj_) 

2\ (^Zj) 

(^D^) 

(^Z,) 
I X 

2^A^ (^Zg) 

8 

•115.7973 

(0.657) 

115.7472 

( 2 . 0 2 0 )  

-115.6568 

(4.480) 

-115.8214 

( 0 . 0 )  

-115.7166 

(2.852) 

-115.6785 

(3.889) 

-115.7741 

(1.287) 

-115.7405 

( 2 . 2 0 2 )  

-115.5396 

(7.669) 

-115.7510 

(0.465) 

-115.7208 

( 1 . 2 8 6 )  

-115.6152 

(4.159) 

-115.7680 

( 0 . 0 )  

-115.6680 

(2.724) 

-115.6575 

(3.007) 

-115.7175 

(1.377) 

-115.6951 

(1.985) 

-115.5045 

(7.170) 

^ Numbers in parentheses (in eV) are relative to the 

lowest state calculated "'"A^ 135.4°). 
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Table 3.2. Occupation numbers for T orbitals of D_. and C„ 
planar aliénés 

Orbital occupation numbers 

°2h lb3u ^^2g 2b2u 2^3U 

u 
( SCF 2.0 1.0 1.0 0.0 

u 
MCSCF 1.906 1.0 1.0 0.094 

(^Z^) SCF 2.0 2.0 0.0 0.0 

MCSCF 1.983 1.937 0.007 0.072 

2^A 
g SCF 2.0 0.0 2.0 0.0 

MCSCF 1.805 0.229 1.956 0.010 

Orbital occupation numbers 

Sv 
(102.8°) Itl 6a^ 1^2 2̂ 1 

'̂ 2 
) SCF 2.0 1.0 1.0 0.0 

MCSCF 1.866 1.0 1.0 0.134 

1^ SCF 2.0 2.0 0.0 G. 0 

MCSCF 1.820 1.980 0.172 0.028 

z'̂ i l^s SCF 2.0 0.0 2.0 0.0 

MCSCF 1.975 0.036 1.854 0.135 
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Table 3.3. Charge distribution in planar aliéné states^ 

State Mulliken 

Cl 

populat 

C2 

ions ( MCSCF) 

»2 

^2h 
( a 

Tt 

5.390 

1.010 

4.880 

0.980 
0.84 

(^Z^) a 

If 

5.285 

1.405 

4.336 

1.184 
0.77 

a 

? 

5.511 

0.689 

5.464 

0.666 
0.87 

'̂ 2 
(^D^) a 

ir 

5.370 

1.020 

4.889 

0.961 
0.85 0.83 

l^Ai ) a 5.549 5.451 
1 ± 

TT 0.761 0.499 
0.83 0.88 

2^A ( -z_) a 5.183 4.449 
L / 

IT 1.337 1.291 
0.83 0.78 

^ At geometries I and III shown in the text. 
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Table 3.4. Dipole moments for (102.8°) geometry 

State Dipole îsoaents (debye) 
SCF MCSCF 

'̂ 2 
(^D^) 0.75 0.72 

'Al (\) 4.01 3.39 

S 'S' -1.11 -0.71 
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'2h 2v °2h '2v 

Figure 3.2. Relative energies for planar aliéné 



www.manaraa.com

47 

separation through weightings of the and Ib^ (€2^) 

orbital coefficients, which can partly compensate for central 

carbon charge deficiency or excess. The 3.39 debyes MCSCF 

dipole moment (Table 3.4) calculated for the lowest l^A^ 

state is quite substantial for a hydrocarbon. Due to its 

substantial Rydberg character, ^Z2 is not well 

represented by the simple valence representation 4. This can 

be corrected by having a Rydberg function in addition to the 

basis set used. 

The order of the various states is in excellent agreement 

with qualitative predictions and the results of previous 

48-50 
calculations . SCF and MCSCF results are qualitatively 

similar, however, the energy difference between ^^2h^ and 

(Cgy) decreases from 0.70 eV (SCF) to 0.18 eV (MCSCF). At 

the intermediate geometry (II) in the vicinity of the avoided 

crossing, SCF energies for ^Z^ and ^Z^ are quite close (0.28 

eV); inclusion of correlation energy in MCSCF calculation 

predictably increases this to 1.04 eV. It is noteworthy that 

the gap between the and is quite small; 1.36 eV in 

and 0.61 eV in Cg^. Nonadiabatic coupling might lead to 

43 
relatively rapid internal conversion at these geometries , 

but it is still anticipated that a finite lifetime (10 "-10 

s) for these polarized species. It has also been suggested 

that in highly polar media, might become the ground 

51 
state due to solvation. 
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E. Discussion 

Previous theoretical investigations of the potential 

energy surface have explored the barrier to inversion in 

4.9 
aliéné" , thermal and photochemical opening of cyclopropene to 

52 
a vinyl carbene , and the cyclopropylidene to aliéné 

conversion^^. There is also an immense interest in the 

excited state surfaces, specifically the location and 

electronic nature of "sudden polarized" minima or "funnels" 

and their potential involvement in aliéné photoreactions^^. 

It was suggested Scheme 3.1 may be the two possible pathways 

toward planarity in aliéné through twisting and bending or 

simply twisting of the ? bond. As in ethylene derivatives, 

this ir bond rotation provides a simple mechanism for 

interconversion of stereoisomers which, in aliéné, are 

enantiomers. Racemization from both singlet and triplet 

states of aliéné has been observed experimentally*^. 

Zwitterionic planar species have been proposed for the 

54 
structure of small-ring aliénés such as 1,2-cyclohexadiene 

in which the aliéné is constrained to near-planarity. 

55 
However, it has been shown theoretically , and supported by 

experiment^^ that this molecule has a chiral equilibrium 

structure. The zwitterions are excited states and should not 

be involved in ground state reactions. 
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Scheme 3.1. Two possible pathways toward planarity in aliéné 
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IV. THE INTRAÀTOMIC CORRELATION CORRECTION TO THE FORS MODEL 

A. Introduction 

For more than a century, chemists have thought of 

molecules as collections of atoms held by chemical forces in 

close proximity to each other, and this view quite naturally 

prevailed during the early stages of quantum chemistry, when 

the valence bond (VB) approach as well as the molecular 

orbital (MO) approach were formulated in terms of minimal 

basis sets of atomic orbitals. However, as the originally 

used minimal basis of Slater AOs gave way to the modern 

practice of using extended AO bases, and as self-consistent-

field wavefunctions augmented by configuration interaction 

supplanted the simple VB and MO models, the role played by 

atoms in molecules became obscured. In the context of 

accurate ab initio work, the traditional picture of a molecule 

formed by atoms appeared blurred and its validity limited to 

the realm of rough arguments. 

14 
Through the recent development of the FORS model the 

concept of the atomic minimal basis set has however been 

rehabilitated within the framework of quantitative ab initio 

calculations with extended bases because, as discussed in 

references 14b and 14c, FORS wavefunctions can be cast in a 

form which reveals the manner in which atoms participate in 

molecular binding. 

In the present chapter, it will be shown that this atomic 
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analysis has a further benefit: it permits the improvement of 

FORS wavefunctions through a semi-empirical correction for 

that part of the electron correlation which still remains 

unaccounted for in the FORS model. It is based on reasoning 

which is related to the "Atoms-in-Molecules" (AIM) approach 

57-59 
advanced over three decades ago by Moffitt and 

subsequently improved by Hurley^^ . Before discussing the 

extension of the FORS model in more detail, essential features 

of the Atoms-in-Molecules method will be outlined. An earlier 

68 
review of this subject was given by Parr and a later one by 

eg 
Balint-Kurti and Karplus 

B. Atoms-in-Molecules Model 

1. Intraatomic and interatomic energy contributions 

In the early fifties, Moffitt realized the fact that the 

errors in molecular ab initio calculations of his day, even 

though amounting to only about one percent of the total 

molecular energies, were still larger than most chemical 

energy differences- such as bond energies, excitation energies 

and activation energies, and he recognized that it was 

impossible to remove such errors with computational techniques 

available at the time. This error, Moffitt argued however, 

lay mainly in certain intraatomic energy contributions which 

occur in the molecule as well as in the free atoms, and he 

proposed therefore a correction scheme based on a partitioning 
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of quantum mechanical molecular energy expressions into 

intraatomic and interatomic terms. The former are much 

larger, but they are presumed to be obtainable from 

spectroscopic data of free atoms with much greater accuracy 

than they can be calculated. The latter on the other hand are 

substantially smaller than the former, and they are presumed 

to be obtainable with sufficient accuracy from molecular 

57 
calculations. Moffitt successfully applied improved 

potential curves for several valence states of molecular 

oxygen and he subsequently explored the concept of atomic 

valence states in molecules^^. 

Moffitt's approach is based on the expansion of molecular 

electronic wavefunctions in terms of what he termed "Composite 

Functions" (CFs). Consider for example a diatomic molecule 

and let 1A^> and jEU) be the exact wavefunction of the i-th 

state of the free atom A and the j-th state of the free atom B 

respectively. For simplicity of language and discussion, the 

states |A^> and |Eu> will also include ground and excited 

states of all positive and negative ions of atoms A and B. A 

composite function for the diatomic molecules AB is then any 

function 

|A_Bj> = N_jA*C|Ai>|Bj>} , (4.1) 

where k* is the coset antisymmetrizer which produces a totally 
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antisymmetric molecular wavefunction from the product of the 

two antisymmetric atomic state functions, and is a 

distance-dependent factor that normalizes At finite 

molecular geometries different composite functions are usually 

non-orthogonal, just as atomic orbitals on A and B have 

non-vanishing overlap integrals. In order to determine 

molecular wavefunctions as expansions in terms of CFs, such as 

given by Equation (4.1), it is necessary to evaluate the 

matrices 

^ij,k;l ' 
(4.2) 

"iirkl = 
(4.3) 

where H is the Haniltonian, and to solve the corresponding 

eigenvalue problem in which the eigenfunctions are a complete 

set of composite functions. 

Moffitt then made the observation that the quantities 

- S. . .,CE(A.) + E(B.) + E(A, ) + E(B.)}/2 (4.4) 
1 3  ̂ "i" 

have the character of interatomic interaction energies. In 

this equation, the quantities E denote the energies of the 

respective free-atom states, e.g. 
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E(A^) = <A^1H^1A^> , etc. , (4.4a) 

where is the Hamiltonian of atom A. This contention 

Moffitt^® justified for the case that |A^> and |Bj> are exact 

atomic states, and he made it also plausible for analogous 

quantities 

^ijfkl " "ij.kl 

- kiCE(A^) + E(B^) + E(A%) + E(Bj^)}/2 (4.5) 

which are derived from approximations |A_>, |Bj> to the 

exact atomic states |A^> and |Bj>. 

The conjecture made by Moffitt was that reasonably good 

approximate ab initio wavefunctions will yield usable 

approximate values for the interatomic quantities and 

V. . . , , but not for the total matrix elements H. . ,, which are 
i J r 'vX i J r Ki. 

mixtures of interatomic and intraatomic quantities. 

Soecificallv, Moffitt^® orooosed that the quantities S. . . , 
1 3, KX 

and V. . . , can be taken as adequate approximations for 

S. . ,, and V. . , , in Equation (4.4). Introduction of these 
l],kl IDrKl 

substitutions in Equation (4.4) and combination of Equations 

(4.4) and (4.5) yields then directly the following 

approximation for the matrix elements H. . , ,: 
i]fkl 

*ij,kl ^ "ij,kl ^ij,kl ^ij^kl "ij,kl ' 
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where 

AEj, j = CAE(A^) + AE(Bj) + AE(Aj^) + AE(B^)3/2 , (4.6a) 

with 

AE(A^) = E(A^) - E(A^) , etc. (4.6b) 

Equation (4.6) defines the AIM Hamiltonian in Moffitt's final 

formulation. The second term on the right hand side of 

Equation (4.6) manifestly represents corrections which are 

expected to remedy the intraatomic deficiencies in the 

approximate Hamiltonian matrix H^^ . From an operational 

point of view, the procedure is to work in terms of certain 

approximate CPs using the corrected Hamiltonian H. . instead 
i  J  f K X  

of the "direct" Hamiltonian H. . . , in solving the eigenvalue 
1 J / 

problem. Any specific implementation of the AIM approach 

clearly depends upon the number and types of approximate CFs 

included in the wavefunction expansion and upon the manner in 

which the correction terms AE. . . . are determined. 

2. The AIM approach and electron correlation 

To date, the AIM method has only been applied to valence 

states of molecules and, for these cases, it has been assumed 

that the expansion bases are derived from atomic states |A^> 

corresponding to those approximate atomic configurations 
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|A^> which are obtained from the various possible 

occupancies and couplings of a minimal basis set of atomic 

valence orbitals through atomic open-shell SCF calculations. 

When the CFs formed from such approximate state functions 

1A^> and |Bj> are used to calculate the matrices S, H 

and E, it is apparent that the corrective energy differences 

AE(A^) etc. of Equation (4.6b) are nothing else but the 

correlation energies for the respective states of the free 

atoms. Moreover, assuming that all possible valence AO 

configurations, adapted to spherical symmetry, are included in 

the calculation of the E(A^), it is known that the |A^> 

actually include "degeneracy-type" correlations such as 

result, for example, from the mixing of configurations of the 

types s^p" and s^p"^^ (n ̂  4) in some atomic states. More 

specifically then, the energy differences AE(A^) represent the 

"dynamical" parts of the correlation energies of the various 

atomic states. 

On the other hand, it is also apparent that expansions of 

approximate molecular wavefunctions in terms of the full set 

of CFs formed from these approximate atomic states |A_> and 

|Bj) take into account all those types of correlations which 

result from different occupations and couplings of the valence 

orbitals of both atoms in a diatomic molecule. Such 

approximate molecular wavefunctions include therefore again 

all degeneracy-type correlations, some of them being of the 
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aforementioned intraatomic type, but most of them now having 

interatomic character. 

In light of these considerations, it must be inferred 

that the corrective terms in Equation (4.6) can be expected to 

compensate mainly for dynamical correlations which are missing 

in the described approximate wavefunctions. The manner in 

which this correlation is accomplished moreover implies that 

this implementation of the AIM concept provides a way of 

estimating molecular dynamical correlations based on the 

assumption that, even in molecules, they are essentially 

atomic in nature. It is for this reason that Hurley called 

his further developments of the AIM approach the Intraatomic 

Correlation Correction (ICC) method. 

3. Choices of atomic orbitals 

The discussed AIM implementation is based on approximate 

CFs which are constructed from a minimal basis set of atomic 

orbitals (MBS AOs). Any quantitative implementation depends 

therefore on the manner in which these MBS AOs are chosen. 

The decision is non-trivial as is illustrated by the data in 

Tables 4.1 and 4.2 for fluorine atom. Table 4.1 offers a 

comparison of errors due to approximation of the Hartree-Fock 

AOs (lines 3 and 4 minus line 2) with the correlation error 

(line 2 minus line 1) and the relativistic correction (line 1) 

for the ground state ^P(ls^2s^2p^). Table 4.2 exhibits the 
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Table 4.1. Errors in calculating the fluorine ground state 

Type of calculation Error(hartree)^ 

1. Correlated, unrelativistic 0 .0805 

2. Uncorrelated, unrelativistic 0 .4085 

3. Uncorrelated, unrelativistic, optimized single 
exponential AOs instead of exact SCF AOs 0 .9413 

4. Similar to 3, but with Slater AOs instead of 
exact SCF AOs 0 .9517 

^ Error = (Energy of quoted calculation) - (Elxact 

energy). Exact energy = -99.8834 hartrees 

Table 4.2. Errors in calculating various spates of fluorine 
with the same minimal basis set 

State Error(hartree)^ 

F LS^2S"2p^) 0.0016 

•k 2 2 6 0.0190 F S( Is 2s2p ) 0.0190 

F" ^S(LS^2s^2p^) 0.1518 

F+ 3 2 2 4 
P(Is 2s 2p ) 0.1075 

The minimal basis set is that of the near Hartree-Fock 
2 2 2 5 

AOs obtained variationally for the Pds 2s 2p ) ground state 

with an even-tempered 14s, 7p basis of gaussian primitives-

^ Error = (Energy obtained for Hartree-Fock type energy 

with basis set quoted under a) - (Exact SCF energy for each 

state). 
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basis set errors incurred when the MBS which is optimal for 

the ground state SCF approximation is used to calculate 

Hartree-Fock-type energies of other states. Also noteworthy 

in this context is the error resulting from using a minimal 

basis set rather than an extended basis set in molecular 

calculations. Even if the minimal basis is of Hartree-Fock-

type quality (the optimal case), the calculated energy of F^ 

in a full set of CFs differs by about 40 millihartrees from 

that obtained with an extended basis and, in other diatomics, 

the error can be even more substantial. 

Although it might seem reasonable that the atomic 

correction terms AE(A^) of Equations (4.6a,b) should be 

calculated with approximate AOs which are identical to those 

that actually occur in the molecular calculations, such a 

procedure consistently yields substantial overestimates for 

the molecular binding energies. Hurley^^ attributed this to 

the large corrections obtained for the approximate CFs of 

excited and, in particular, ionic states when ground state AOs 

are used to calculate them. This insight led him to formulate 

C1 CO 
the Intraatomic Correlation Correction (ICC) procedure ' , a 

substantive amd essential advance over the AIM approach. The 

ICC calculations are based on a minimal basis set of 

Slater-type atomic orbital, and the approximate atomic 

energies E(A^), E(Bj) needed for the determination of the 

corrected terms AE(A^), AE(Bj) are calculated by optimizing 
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the orbital exponents for each atomic and ionic states 

separately, regardless of the value which these exponents have 

in the molecular calculation that yields S. . ,^ and 
i]fkl 

^ii kl* orbital exponents in the molecular calculation, 

on the other hand, are most advantageously obtained by 

minimizing the uncorrected molecular energy for the molecular 

state under consideration. 

A physical justification of this way of determining the 

intraatomic correction terms is provided by the observation 

that dynamical correlation energies are surprisingly 

independent of orbital size and shape. Consider for example 

the correlation error of two electrons in one s-type orbital. 

This error^^ is 1.08 eV for H , 1.14 eV for He, 1.18 eV for 

Li"*" and 1.24 eV for Ne^^; and it varies from 1.12 eV to 1.00 

eV for the inner shell correlations from Li to Ne^^ It 

even remains approximately constant when atoms are 

d i v.. X wo Xi UilClU Xia Ct X Xl i X. U C X^WWW • CL* 

77 -f. 
Gregori " found that the correlation energies of He, Li and 

Be" changed by at most 0.02 eV when the radius of the 

enclosing box was reduced from R=<» to R=1 bohr. The same is 

true even with an additional center as the correlation energy 

19 
for the H^ molecule is 1.1 eV . Considering larger systems, 

the correlation error for F, Ne' and Na^' are 8.82, 8.92 and 

9.14 eV respectively^^. It may also be noted that a similar 

constancy persists for optimal Slater-type minimal-basis-set 
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SCF approximations; for example, the correlation-plus-MBS 

truncation errors of H~, He and Li"*" are 1.49, 1.51 and 1.54 eV 

respectively^^. 

In later work, Hurley^^ took a further step in the MBS 

approach, namely he used optimal atomic Hartree-Fock SCF AOs 

(linear combinations of Slater-type AOs) for the determination 

of the correction terms AE<A^), and scaled atomic HF-SCF AOs 

for the molecular calculations. The problem with this 

procedure is that atomic HF-SCF AOs are known to perform more 

poorly as minimal basis sets for molecular calculation than do 

Slater-type AOs, as discussed in Reference 14c. 

74 
Arai also considered the need for distortions of atomic 

wavefunctions in molecules. However, the mathematical 

complexity of his "Deformed-Atoms-in-Molecules" method has 

precluded wider application. 

4. The non-orthogonalitv problem 

The implementation of the basic ICC idea, namely, to 

correct for intraatomic correlation errors, would be 

conceptually most straightforward if the CFs would remain 

orthogonal at all internuclear distances. If they were, then 

the fundamental Equation (4.6) would reduce to 

"i],kl ̂  "ij,kl " "ij,kl ^^ij ^ij,kl ' (4.7) 

with 
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j = AE(Aj^) + AE(Bj) (4.7a) 

and the meaning of this equation would be physically clear, 

namely: the Hamiltonian diagonal element of each CF embodies a 

correlation error which is the sum of the correlation errors 

of the atomic states contained in that CF, and these errors 

are corrected separately for each CF by Equation (4.7). From 

this perspective, Moffitt's Equation (4.6) can be viewed as an 

intuitive attempt to generalize the physically transparent 

Equation (4.7) to the less transparent case of non-orthogonal 

CFs. Hurley^^ has rather elegantly justified this 

generalization by the following alternative derivation. From 

the molecular wavefunction 

(4.8) 

he derives "occupation numbers" for CFs, in analogy to 

75 
Mulliker.'s "gross atomic populations" for non-orthogonal 

atomic orbitals,. by the definition 

"ii L ^ij,lcl ^kl 
(4.9) 

He then defines the correlation-corrected molecular energy 

reasonably as 
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^ il il "ii'kl ^kl f. "^ij ' (4.10) 
i J >tX 1 j 

where the are the same as in Equation (4.7a). It is 

readily verified that Equations (4.9) and (4.10) together are 

equivalent to 

^ ° ij L "ii'kl ' '4-11' 

where the matrix H. . . , is just the one given by Moffitt's 
% J F 

Equation (4.6). The latter has thus been deduced from the 

occupation number assumption (4.9). 

By contrast, Balint-Kurti and Karplus^^'^^ have argued 

that, rather than introducing such an occupation number 

assumption, it would be preferable to introduce appropriate 

definitions of orthogonal composite functions. Specifically, 

they propose that the original non-orthogonal CFs be 

Schmidt-orthogonalized in the order of increasing AIM 

corrections. In many cases (H^. HF, ), this Orthogonalized 

Moffitt (OM) procedure gives worse results for binding 

69 
energies than the ICC method. The OM procedure has been 

carried out using small numbers of Gaussians to expand the 

free atom MBS, and the resulting large basis superposition 

errors call into question the accuracy of the uncorrected 

wavefunctions. For instance, a (5s, 3p) Gaussian basis 
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contracted minimally gives an uncorrected bond strength of 

1.39 eV for while a near Hartree-Fock quality (14s, 7p) 

MBS fails to predict binding, with a bond strength of -0.21 

T A C 
eV~• . Thus, the OM results seem spuriously good due to such 

basis superposition errors. We also note that the OM variant 

of the AIM theory has been applied to a number of triatomic 

69 
surfaces 

In this context it should also be mentioned that Grevy 

77 78 
and Verhaegen and Lieven et al. have developed a 

correction scheme which is similar in spirit to the AIM 

method, but whose formalism amd operational equations are 

based on a somewhat different working hypothesis: the weights 

which multiply the intraatomic correction terms AE are derived 

75 
from a Mulliken population analysis (which involves orbital 

overlap!) of minimal-basis-set atomic orbitals. This 

procedure is simpler than the AIM method and can be applied to 

wavefunctions which are not even linear combinations of CPs. 

However, it determines only weights of atomic configurations 

and not of individual atomic states. This is most recently 

78 
described by Lieven, Breulet and Verhaegen 

5. Correlation corrections for atomic and ionic states 

Essential for the application of all AIM schemes is a 

knowledge of the atomic correction energies AE(A^). They are 

deduced from the exact atomic energies E(A^) and the 
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calculated open-shell atomic Hartree-Fock limits E(A^). 

Fortunately, much more information is available on this 

subject at present than was the case in the early days of AIM 

theory. 

— 8+ 
For two-electron atomic systems (H to Ne ), very 

accurate calculations were performed by Pekeris^^^ to yield 

unrelativistic correlation energies as well as relativistic 

corrections. Near Hartree-Fock energies were given for H , 

He, Li^ and Be^^ by Froese-Fischer^^^. 

For atoms and many positive ions with three to ten 

electrons (Li to Ne), two thorough compilations have been 

prepared over a decade ago. Correlation energies have been 

determined by Verhaegen and Moser^^ for all states arising 

from (ls^2s^2p^) configurations, in some cases corrected for 

the near-degeneracy-type configuration interaction between 

(ls^2p") and (ls^2s2p^"~^) states. Correlation energies for 

all (ls^2p") and (ls^2s2p^) states, as well as relativistic 

corrections for all three types of configurations were 

79 
determined by Desclaux, Moser and Verhaegen 

80 
For higher elements, less data are available. Clementi 

has given correlation corrections for the ground states of the 

first 22 elements and some of their positive ions. Fraga et 

4 
al. have given relativistic corrections to Hartree-Fock 

energies for ground states of the first 102 elements and many 

of their positive ions. 
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Correlation and relativistic corrections for negative 

ions are considerably less available because of the difficulty 

in obtaining experimental data for these species. Generally, 

only the singly negative ion, at most, will be stable. 

Electron affinities are difficult to measure accurately, and 

are normally only available for the ground states of the ions. 

81 
Hotop and Lineberger have given experimental electron 

affinities for the first 85 elements of the the periodic 

tahle, including very few negative ion excited states. 

on 
Schaefer et al. have given less accurate theoretically 

derived electron affinities for atoms B to F, including a 

number of low-lying excited negative ion states. Correlation 

and relativistic corrections can be extracted from these 

electron affinities with the help of judicious extrapolation 

of the known corrections for the neutral and positive ions. 

7 0 c 
Clementi and Roetti give SCF energies for singly negative 

ions from Li to I . For doubly negative ions, there are 

SO 
virtually no experimental data , and extrapolation to these 

or even more negative ions from the positive and neutral 

species is hazardous. The establishment of a more reliatble 

data base for these negative ions will be a necessary 

prerequisite for general future applications of the AIM theory 

on a wider scale. Fortunately, CFs involving high negative 

ions usually have very small coefficients in the molecular 

wavefunctions. 
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79 
From the compilation of Desclaux, Moser and Verhaegen , 

it is apparent that relativistic corrections can be 

substantial even for atoms in the first three rows of the 

periodic system where they arise from the inner shell only. 

If it can be assumed, however, that such relativistic 

corrections remained unchanged for the various atomic 

configurations as they enter the molecule, then the 

relativistic correction for the molecule can also be recovered 

by the AIM correction method, even though only the 

unrelativistic Hamiltonian is being used for the molecular 

calculation. For heavier atoms, however, where relativistic 

effects modify the valence shell, directly or indirectly, the 

inclusion of relativistic terms in the molecular Hamiltonian 

will most likely be necessary when calculating the matrix 

elements 

C. The FORS-IACC Model 

1. Theoretical formulation 

The AIM approach can be combined with the FORS model 

because of two features characteristic for FORS wavefunction : 

(i) FORS MOs can be chosen as being so strongly localized that 

they are almost identical with the minimal basis of the 

Hartree-Fock SCF AOs of the free atoms; (ii) the full valence 

space of all possible configurations that are generated from 

the localized FORS MOs is identical with that spanned by the 
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set of all composite functions (CPs) which can be constructed 

from the localized FORS MOs. 

In Reference 14b, the remarkable observation was made 

that projected localized FORS MOs (PLMOs) can be chosen in 

such a manner that each of them is almost identical (with an 

overlap usually exceeding 0.9) to one of the free-atom SCF 

AOs, and that they can therefore be considered as a 

"molecule-adapted minimal basis set of atomic orbitals". It 

is therefore a straightforward matter to substitute these 

PLMOs in place of the corresponding free-atom SCF AOs in the 

formulae for atomic configurations. The modified 

configuration state functions which result in this manner can 

thus be chosen to be the "approximate atomic state functions" 

|A^>, |Bj> from which "approximate composite functions" 

lA^Bj) are constructed for the AIM procedure, as discussed 

in the preceding sections of this chapter. It is also evident 

that the number of independent CFs which can be constructed 

will be exactly the same as the number of linearly independent 

configuration state functions that can be constructed from the 

FORS MOs in the usual manner (e.g. in terms of SAAPs), namely 

equal to the dimension of the full reaction space. This 

choice of the approximate CFs for the AIM procedure has the 

following unique advantages. 

FORS wavefunctions are entirely free of the constraints 

inherent in previous AIM models. The PLMOs are not simple MBS 
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AOs but are optimally expanded in an extended set of 

quantitative basis orbitals which can be as large as desired. 

The only restriction is the number of configuration generating 

orbitals used to generate the full reaction space. Within 

this limitation, the FORS wavefunction has complete 

flexibility and is the best possible function. Expressed in 

terms of CFs constructed from the PLMOs, FORS wavefunctions 

can be considered as the ultimate stage in the development 

begun by Arai and Hurley who realized that expansions in terms 

of a limited number of CFs made from exact atomic states would 

74 
never do, but that deformed atoms in molecules were needed 

(Such deformations entail adjustments in the wavefunction 

which, in Moffitt's original model, could have been achieved 

only by admixtures of higher and even continuum exact states.) 

Since FORS wavefunctions result from MCSCF calculations, the 

CFs constructed from FORS PLMOs must be considered as 

representing those deformed atom states which are "intrinsic" 

to the particular molecule (assuming a sufficiently large 

extended set of quantitative basis orbitals has been used to 

exclude basis set errors). 

Even though the PLMOs are so very similar to the SCF AOs 

of the the free atoms, they nevertheless form an orthonormal 

set, and so do the composite functions |A_Bj> constructed from 

them. Thus, the non-orthogonality problem has been resolved 

in the most natural manner. It is as if the FORS PLMOs offer 
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the best of both worlds: they are optimal for the molecular 

calculation and they also generate orthogonal CFs. As a 

consequence the intraatomic correlation correction is achieved 

by the physically straightforward and conceptually transparent 

Equation (4.7), i.e., by simply modifying the diagonal 

elements -

The price paid for these advantages is that the PLMOs 

differ from the free-atom SCF AOs by more than just a scale 

adjustment. They are somewhat distorted and even contain 

small admixtures from neighbouring atoms. Indeed, those PLMOs 

which correspond to a set of spherically degenerate free-atom 

AOs (such as 2p^, 2Py, Zp^) belong no more to a representation 

of the full rotation group around that atom, but they reflect 

the molecular symmetry. Thus, in a diatomic molecule, the 

PLMOs corresponding to the AOs 2p^ and 2Py of an atom differ 

from each other by a rotation only, but the PLMO corresponding 

to 2p^ on the same atom has a slightly different shape. 

For the calculation of the correlation corrections, the 

reasoning of Hurley^^, outlined in Section B.3 of this 

chapter, is however still pertinent, since it relies on the 

approximate independence of dynamic correlation errors upon 

changes in orbital size and shape. Therefore, for each state, 

the exact atomic correlation correction 

AE(A^) = E(A^)-E(A^) 
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where E(A^) is the Hartree-Focic limit for that state, is 

used in the approach proposed here. It is apparent that this 

procedure does not compensate for basis set truncation errors 

in the molecule. One might conjecture that such a 

compensation could be had cheaply by determining the E(A^) 

through Hartree-Fock SCF calculations in the free atom using 

exactly the same extended set of quantitative basis orbitals 

as is used in the molecular calculation. But such a scheme 

turns out to be unreliable. It is possible, for example, that 

the addition of certain basis functions will markedly lower an 

atomic energy E(A^) particularly for negative ions, while 

hardly affecting the molecular energy. 

The approach outlined will be abbreviated as FORS-IACC 

(IntraAtomic Correlation Correction to the FORS model). 

2. Mathematical formulation 

The FORS-IACC method relies on choosing, as a basis for 

the full reaction space, that set of composite functions which 

are generated from the molecule-adapted minimal-basis atomic 

orbitals furnished by the PLMOs (the projected localized FORS 

MOs). These composite functions, (CFXy say, form an 

orthonormal set and there thus exists an orthogonal 

transformation between them and all possible spin-adapted 

1 4cL 
antisymmetrized products, (SAAP)^ say , which can be 

constructed from the same PLMOs. 
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However, the subspace of those SAAPs which are needed to 

express a particular molecular state of a given spin 

multiplicity and spatial symmetry usually has a dimension that 

is smaller than the number of CFs required for expressing that 

state. This is because, in general, the CFs do not belong to 

irreducible representations of the appropriate space and/or 

spin symmetry. The number of CFs needed to express the SAAPs 

spanning the configuration space appropriate for a certain 

molecular state is therefore in general larger than the number 

of these SAAPs, which form the practical working basis for 

evaluating matrix elements and performing numerical 

computations. The transformation between the composite 

functions (CF)^, and the spin-adapted antisymmetrized products 

(SAAP)jç is therefore a rectangular matrix: 

|SAAP^> = Z ICFy) T^ . (4.12) 

K = 1, 2, ... M V = 1, 2, ... M M' 1 M . (4.12a) 

The matrix T is usually sparse and its elements are simply 

defined numbers. It is moreover independent of the molecular 

geometry. It satisfies the orthogonality condition 

t'̂ T = I, (4.12b) 
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A -1 
but TT'#I since T , in general, does not exist. 

CF 
The Hamiltonian matrix between the CFs, H say, is 

qa&p 
related to that between the SAAPs, H say, by the 

similarity transformation 

hSAAP = rf T (4.13) 

The intraatomic correlation correction is accomplished by 

CF 
adding to H the diagonal matrix 

S^} = £S^ Z AEy(A)} , (4.14) 

where the sum goes over all atoms in the molecule and AF^(A) 

is the atomic correlation correction for that state of the 

atom A which occurs in the composite function (CF)^. 

Transforming back to the SAAP basis one obtains for the 

intraatomic correlation correction the matrix 

^^SAAP ^ = tZ T^^T^^âE^} = , (4.15 

SAAP 
which can be added to the FORS matrix 

There are three possible options in using the corrected 

matrix (^SAAP ̂  ̂ gSAAP ̂ determine energies and 

wavefunctions. The simplest is to find the energy correctio 

approximately from the first order perturbation expression 
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AE = Z C? Cy , (4.16) 
IK IK IK 

where are the expansion coefficients of the FORS 

wavefunction in terms of (SAAP)^. In many cases, this 

estimate is surprisingly accurate. Nonetheless, a better way 

is to solve the eigenvalue problem for the corrected matrix. 

This procedure yields not only improved energies, but also an 

improved wavefunction. These two procedures have been 

implemented into a computer program named lACC and a detailed 

description of which is given in next sections. Finally, it 

is possible to incorporate the corrected Hamiltonian matrix 

^j^SAAP ^ ̂ SAAPj into the MCSCF iteration procedure which 

yields the FORS wavefunction. This is possible since the 

SAAP 
correction matrix depends neither on the MO expansion 

coefficients nor on the MC-CI expansion coefficients. In 

implementing such a procedure.- it will be necessary- however, 

to see to it that the MOs remain projectively localized after 

each orbital improvement step. 

3. The transformation from molecular SAAPs to composite 
functions 

The mathematical manipulations required to determine the 

transformation matrix T of Equation (4.12) represent the only 

non-trivial aspect of the FORS-IACC implementation. This task 

is naturally divided into two stages. The first stage 
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consists of expressing molecular SAAPs in terms of atomic 

antisymmetrized products. The second stage is to find 

expressions relating these atomic antisymmetrized products to 

atomic states that are generated from real atomic orbitals, 

such as are used in molecular calculations. 

(a) 

The first stage, namely the expression of molecular SAAPs 

in terms of atomic antisymmetrized products is accomplished in 

two steps. First, one must regroup the spatial atom-localized 

orbitals (PLMOs) in a given molecular SAAP in such a manner 

that all those orbitals which belong to one atom are occupied 

by electrons in sequential order. This is achieved by an 

appropriate permutation of electrons. Next, the spin function 

0 in the SAAP, as changed by this permutation, must be 

expanded in terms of products of spin functions from the 

various atoms. After this has been done- the total 

antisymmetrizer is decomposed into a product of atomic 

antisymmetrizers and a coset antisymmetrizer. Thereby, the 

molecular SAAP appears as an antisymmetrized product of atomic 

SAAPs. 

As a simple example consider a covalent VB-type SAAP that 

can occur in Li^r 

W = (l/2)ACk^}c^z^s„0^©„©^} , (4.17) 
A D rx o 0 0 O 
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where and kg are Is orbitals on atoms A and B respectively; 

is a 2p^ orbital on A and Sg is a 2s orbital on B; 

and the factor 1/2 normalizes Î due to two doubly occupied 

orbitals. 

Let (345) be the cyclic permutation which changes 

electron 3 into 4, 4 into 5 and 5 into 3. Since it is an even 

permutation, one has A(345) = A and consequently 

Î = (l/2)A(345)£k^k^kgkgZ^Sg©^©^©^3 

= (l/i)A€k^(l)k^(2)kg(4)kg(5)z^(3)Sg(6)©jj(12)©jj(45)©Q(36)> 

= ( l/2)ACk^kj^Zj,k^k^ST5(©^a©^p-©^P©^a) /f2} 

= (1/2)M(IC|ZJ^0,CX)(4S30.P) - (Ic|z^6^e)(ic|sge^a)j/J2 

© 
0 

(ap-pcx) in 

-1/2 P 
A = (61) Z (-1) P 

P 
(4.18) 

(4.19) 

Here 
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is the antisymmetrizer for electrons 1, 2 and 3; Ag is the 

corresponding antisymmetrizer for electrons 4, 5 and 6 and A* 

is the coset antisymmetrizer defined by 

A* = (3;3!/6!)l/2 2* (-l)Pp 
P 

where the sum Z* goes over a set of 20 coset generating 

permutations which are defined as follows. If Sj^ is the 

symmetric group of all permutations between electrons 1, 2 and 

3 and Sg is the group of all permutations between electrons 4, 

5 and 6, then the group of permutations between all six 

electrons has the left coset decomposition 

S = S'̂  ® ® Sg (4.20) 

where S is a collection of (5i/3!3!) = 20 (non-unique) 

permutations called coset generators. 

In the second stage, the four atomic antisymmetrized 

products of molecule-adapted atomic orbitals occurring in 

Equation (4.19), must be expressed in terms of atomic state 

functions. To this end, the molecule-adapted AOs are 

temporarily replaced by free-atom AOs. The case at hand is a 

simple one in that each atomic antisymmetrized product is 

already an atomic state, namely: 
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A^(k^ZAaPa) = |Az ^P(0,l/2)> , (4.21a) 

A^Ck^z^app) = lAz ^P(0,-l/2)> , (4.21b) 

Ag(kgSgapa) = IBs ^S(0,l/2)> , (4.21c) 

AfiCkgSBaPP) = IBs ^S(0,-l/2)> , (4.21d) 

where the atomic state symbols are 1 atom s^p" ,Mg)>. 

The molecule-adapted AOs, i.e. the PLMOs, are now 

resubstituted for kg, z^, Sg, so that Equations (4.21) 

represent molecule-adapted atomic states. From these, the 

composite functions (CFs) are then directly defined as: 

i^P(0,l/2)/^S(0,-l/2)> 

= A*|Az ^P(0,l/2)>IBs ^S(0,-l/2)> ? (4.22a) 

|^P(0,-l/2)/^S(0,l/2)> 

= A*!Az ^P(0,--l/2)> IBs ^S(0,l/2)> . (4.22b) 

By virtue of Equations (4.19) ajid (4.22a,b), the 

molecular SAAP of Equation (4.17) can then be expressed in 

terms of CFs as follows: 
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y = C|^P(0,l/2)/^S(0,-l/2)> 

- |^P(0,-l/2)/^S{0,l/2)>}/n , (4.23) 

(b) 

In general, the procedure is more complex. The most 

practical approach is to decompose the part of the spin factor 

which corresponds to the singly occupied orbitals into a sum 

of simple products of the form ( . . . ) where each n is 

either a or p. After appropriate permutations, a molecular 

SAAP Î can then be expressed, as 

f = 2: C A*£JVÎ , (4.24) 
vy ^ ^ 

where A* is an appropriate coset antisymmetrizer and 

4^ are antisvmmetrized oroducts on A and. B resoectivelv. 
pi " " - -

These atomic antisymmetrized. products can then be expressed in 

terms of state wavefunctions |A.> and iB. > of the atoms and 
J K 

their ions, i.e. 

(4.25) 

Combining the Expajisions (4.24) and (4.25) one obtains then 
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« = Z lA.E. > r with T = DCD"^ , (4.26) 
jk ] ̂ 

where the functions 

|AjB%> = A* CAjB%} (4.27) 

are just the composite functions (CFs). 

For the case that the spatial orbitals are limited to a 

set of four valence orbitals of the type s, p^, p^, p^ (in 

addition to a closed core of doubly occupied inner orbitals), 

the atomic states arise from the configurations s"p™ with 

n = 0,1,2 and m = 1-6. It was found most convenient to 

prepare tables for all possible cases and they are listed as 

Table 4.3. This table consists of 54 sub tables for the 

various configurations whose ordering is obtained as follows: 

reverse the order of the set of occupation nuinbers for (xyzs) 

listed at the head of each subtable, and interpret the 

resulting set of digits as a ternary or decimal number. The 

subtables are then arranged in the order of increasing values 

of these numbers. 

As an example for the use of these tables, consider the 

column Pag in the subtable corresponding to the occupation 

(xyzs) = (1211). The data given in this column imply that 
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A£(ycx) (yP) (xp) (za) (sp)} = - I ^D( 1 ' ,-1/2) >/J 2 

+ I^Pd" ,-l/2)>/l6 + |4p(l",-l/2)>/T3 

Similarly, the column ag in the subtable for the occupation 

(xyzs) = (2121) implies that 

A{(xa)(xP)(za)(zP)(ya)(sP)3 

= C|^P(1",0)> + |3p(l",0)>]/T2 

The following conventions for the construction of SAAPs are 

apparent from these examples; 

(i) Under the antisymmetrizer the doubly occupied orbitals 

precede the singly occupied orbitals; 

(ii) The column list only the spin functions for the singly 

occupied orbitals - and the order of the individual spin 

factors corresponds to that of the singly occupied 

orbitals; 

(iii) The singly occupied orbitals and their spin factors must 

be written in the order in which they occur in the 

occupation list at the head of the table, i.e. x,y,z,s. 

Furthermore, the atomic state functions |L,M^'> and 

iL,M^"> occurring in thase tables are defined as 



www.manaraa.com

82 

|L,M^">=C lL,M^>-lL,-M3^>A(-l)"l3/iT^ (4.28) 

9CJ.1 9q^.l 
where is assumed to be positive and | j 

are the conventional complex atomic states in the Condon-

Short ley phase convention. The functions |L,M^'> and |L,Mj^"> 

2 are eigenfunctions of S , but not of S^. However they are 

real functions and, for this reason, the listed transformation 

matrices are all real. In some cases, the functions |L,M^'> 

and have been multiplied by an additional factor of 

(-1). 

The transformations given in Table 4.3 are readily 

obtained by inverting the explicit expressions of the atomic 

states in terms of the real atomic valence orbitals s, p^, p^, 

p^. These expressions have been derived for the free 

8 3  
spherically symmetric atoms 

It ought to be noted that, in the present context, the 

free-atom expansions of Table 4.3 are of course applied to 

PLMOs which are not spherically symmetric. 
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Table 4.3. Expansions of sLntisynunetrized products of real 
atomic spin orbitals in terms of atomic states of 
the appropriate configurations for the minimal 
basis set of the 2s, 2p , 2p and 2p^ shell 

Occupation ; (x y z s) = (0 0 0 0) 

Atomic States Spin Factors 

2S+1 
LtM^, Mg) 

•S( 0, 0 ) 1 .000000  

Conf iguration sV 

O c c u p a t i o n  :  ( x y z s ) = ( 1 0 0 0 )  

Spin Factors Atomic States 

2S+1 'L(M 
1' 

M^) 

'P(l', 1/2) 

'P(1',-1/2) 

a 

1.000000 

0 .000000  

Conf iguration 

e 

0 . 0 0 0 0 0 0  

1 .000000  

3°p^ 

0 2 
O c c u p a t i o n  : ( x y z s ) = ( 2 0 0 0 )  ;  C o n f i g u r a t i o n  ;  s  p  

Atomic States Spin Factors 

M^) 

^0(2', 0 ) -0. 707107 

0, 0 ) 0. 408248 

' S i  0, 0 ) 0. 577350 
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Table 4.3 continued 

O c c u p a t i o n  :  ( x y z s ) = ( 0 1 0 0 )  

Atomic States Spin Factors 

a p 

Conf iguration 

2S+1 
L(Mi, M^) 

Td", 1/2) 

-P(l",-1/2) 

1 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

1 . 0 0 0 0 0 0  

S°p^ 

Occupation : ixyzs)=(1100) 

Atomic States Spin Factors 

Configuration : s^p^ 

2S+1 
Mg) 

^D(2", 0 ) 

^P( 0, 1 ) 

^P( 0,-1 ) 

^P( 0, 0 ) 

a3 

0.707107 

0 .000000  

0 .000000  

0.707107 

eux, 

0 . 0 0 0 0 0 0  

1 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

ee 

0 .000000  

0 . 0 0 0 0 0 0  

1 .000000  

0 .000000  

-0.707107 

0 .000000  

0 .000000  

0.707107 

O c c u p a t i o n  :  ( x y z s )  =  ( 2  1 0  0 )  

Spin Factors 

Configuration 

Atomic States 

. M ) 
j. • s 

^D(l', 1/2) 

P(l", 1/2) 

-D(l',-1/2) 

2p(l",-l/2) 

a 

0.707107 

0.707107 

0 . 0 0 0 0 0 0  

0.000000 

B 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.707107 

0.707107 

s^P^ 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 0 2 0 0 )  ;  C o n f i g u r a t i o n  :  

Atomic States Spin Factors 

2S+lL(M^, Mg) 

^D(2', 0 ) 0.707107 

^D( 0, 0 ) 0.408248 

^S( 0, 0 ) 0.577350 

Occupation : (x y z s) = (1 2 0 0) ; Configuration : s^p^ 

Atomic States Spin Factors 

"s) a P 

^D(l", 1/2) 0. 707107 0. 000000 

^P(1' , 1/2) 0. 707107 0. 000000 

^D(l" , -1/2) 0. 000000 0. 707107 

^P(l ' , -1/2) 0. 000000 0. 707107 
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Table 4.3 continued 

0 4 
O c c u p a t i o n  : ( x y z s ) = ( 2 2 0 0 )  ;  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

Mg) 

^D( 0, 0 ) -0.816497 

^S( 0, 0 ) 0.577350 

Occupation : (x y z s) = (0 0 1 0) ; Conf iguration : sOpl 

Atomic States Spin Factors 

Mg) <x P 

^P( 0, 1/2) 1.000000 0. .000000 

^P( 0,-1/2) 0.000000 1, .000000 

Occupation : (x y z s ) = (1 0 1 0) ; Conf iguration 

Atomic States Spin Factors 

Mg) aB oux ee 

^D(l', 0 ) 0.707107 0 .000000 0.000000 -0.707107 

3p(l", 1 ) 0.000000 1 .000000 0.000000 0.000000 

3p(l",-l ) 0.000000 0 .000000 1.000000 0.000000 

3p(l", 0 ) 0.707107 0 .000000 0.000000 0.707107 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 2 0 1 0 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

M3) a P 

^D(2", 1/2) 0. 707107 0. 000000 

^P( 0, 1/2) 0. 707107 0. 000000 

^D(2", -1/2) 0. 000000 0. 707107 

^P( 0, -1/2) 0. 000000 0. 707107 

O c c u p a t i o n  ;  ( x y z s ) = ( 0 1 1 0 )  

Spin Factors 

0 2 
Configuration : s p 

Atomic States 

Mg) 

^D(l", 0 ) 

^P(l', 1 ) 

) 

•^Pd' , 0 ) 

ap 

0.707107 

0 . 0 0 0 0 0 0  

0 .000000  

0.707107 

oux 

0 . 0 0 0 0 0 0  

1 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.000000 

ep 

0 . 0 0 0 0 0 0  

0 .000000  

1.000000 

0 .000000  

Pa 

-0.707107 

0 .000000  

0 .000000  

0.707107 
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Table 4.3 continued 

O c c u p a t i o n  ; ( x y z s ) = < 1 1 1 0 )  ;  C o n f i g u r a t i o n  ;  s ^ p ^  

Atomic States Spin Factors 

1' 
M^) a^a poux aee pap 

^D(2', 1/2) 0. 707107 -0. 707107 0. 000000 0. 000000 

^D(2', -1/2) 0. 000000 0. 000000 0. 707107 -0. 707107 

^D( 0, 1/2) -0. 408248 -0. 408248 0. 000000 0. 000000 

^D( 0, -1/2) 0. 000000 0. 000000 0. 408248 0. 408248 

^S( 0, 1/2) 0. 577350 0. 577350 0. 000000 0. 000000 

'^S( 0, -1/2) 0. 000000 0. 000000 0. 577350 0. 577350 

'^S( 0, 3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

0, -3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

Atomic States 

2S+lL(M^, Mg) 

^D(2', 1/2) 

^D(2'.-1/2) 

^D( 0, 1/2) 

^D( 0,-1/2) 

^S( 0, 1/2) 

'^S( 0,-1/2) 

^S( 0, 3/2) 

^S( 0,-3/2) 

Spin Factors 

owxp 

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0.816497 0. 

0 . 0 0 0 0 0 0  - 0 .  

0.577350 0. 

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0  

PPa 

000000 

000000 

.000000 

.816497 

.  000000 

.577350 

.  000000 

. 0 0 0 0 0 0  

OUX(X 

0 . 0 0 0 0 0 0  

0 .000000  

0.000000 

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

1.000000 

0 .000000  

eee 

0 .000000  

0 .000000  

0.000000 

0 .000000  

0 .000000  

0 .000000 

0 . 0 0 0 0 0 0  

1 . 0 0 0 0 0 0  
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TaJDle 4.3 continued 

0  4  
O c c u p a t i o n  : ( x y z s ) = ( 2 1 1 0 )  ;  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

«s' ap oca ee pa 

^D(l", 0 ) 0 .707107 0. 000000 0. 000000 -0. 707107 

3p(l', 1 ) 0 .000000 1. 000000 0. 000000 0. 000000 

3p(l', -1 ) 0 .000000 0. 000000 1. 000000 0. 000000 

3 
P(l' , 0 ) 0 .707107 0. 000000 0. 000000 0. 707107 

O c c u p a t i o n  :  ( x y z s )  =  ( 0 2 1 0 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

"s) a e 

^D(2", 1/2) -0. 707107 0. 000000 

^P( 0, 1/2) 0. 707107 0. 000000 

^D(2", -1/2) 0. 000000 -0. 707107 

"P( 0, -1/2) 0. 000000 0. 707107 

Occupation : 

Atomic States 

2S+1 

( x y z s )  =  ( 1 2  1 0 )  

Spin Factors 

0  4  
Configuration : s p 

X(M-,, Mg) 

^D(l', 0 ) 

^P(l", 1 ) 

3p(l",-l ) 

3p(l", 0 ) 

ap 

0.707107 

0.000000 

0 . 0 0 0 0 0 0  

0.707107 

oux, 

0 .000000  

1.000000 

0 . 0 0 0 0 0 0  

0 .000000  

ee 

0 .000000  

0.000000 

1.000000 

0 .000000 

3cx 

-0.707107 

0.000000 

0 .000000  

0.707107 
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Tatble 4.3 continued 

O c c u p a t i o n  :  ( x y z s ) = ( 2 2 1 0 )  

Atomic States Spin Factors 

a e 

Conf igurat ion 

2S+1 
LCM^, Mg) 

T (  0 ,  1 / 2 )  

^P( 0,-1/2) 

1.000000 

0 .000000  

0 .000000 

1 .000000 

sV 

O c c u p a t i o n  :  ( x y z s )  =  ( 0 0 2 0 )  

Atomic States Spin Factors 

2S+1 L(M^, M;) 

^D( 0, 0 ) 

'•S( 0, 0 ) 

-0.816497 

0.577350 

Configuration : 

O c c u p a t i o n  :  ( x y z s )  =  ( 1 0 2 0 )  

Atomic States Spin Factors 

Conf iguration 

M ) 
s 

(X p 

^D(l", 1/2) -0. 707107 0. 000000 

2p(l', 1/2) 0. 707107 0. 000000 

^D(l", -1/2) 0. 000000 -0. 707107 

^P(l', -1/2) 0. 000000 0. 707107 
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O c c u p a t i o n  : ( x y z s ) = ( 2 0 2 0 )  ;  C o n f i g u r a t i o n  :  s ^ p *  

Atomic States Spin Factors 

Mg) 

^D(2', 0 ) 0.707107 

^D( 0, G ) 0.408248 

^S( 0. 0 ) 0.577350 

Occupation : (x y z s) = (0 1 2 0) ; Configuration ; s*^p^ 

Atomic States Spin Factors 

"s) a p 

^D(l', 1/2) -0 .707107 0. 000000 

^P(l", 1/2) 0 .707107 0. 000000 

^Dd' , -1/2) 0 .000000 -0. 707107 

2p(l", -1/2) 0 .000000 0. 707107 

Occupation : xyzs) = (1120) 

Spin Factors 

0 4 
Configuration : s p 

Atomic States 

Mg) 

^D(2", 0 ) 

^P( 0, 1 ) 

^P( 0,-1 ) 

^P( 0, 0 ) 

cxp 

0.707107 

0.000000 

0 .000000  

0.707107 

oux 

0 . 0 0 0 0 0 0  

1 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

BB 

0 . 0 0 0 0 0 0  

0 .000000  

1 . 0 0 0 0 0 0  

0 .000000  

Ba 

-0.707107 

0 .000000  

0 .000000  

0.707107 
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Table 4.3 continued 

O c c u p a t i o n  :  ( x y z s ) = ( 2 1 2 0 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

Mg) a P 

^P(l", 1/2) 1 .000000 0. 000000 

2p(l",-l/2) 0 .000000 1. 000000 

0 4 
O c c u p a t i o n  : ( x y z s ) = ( 0 2 2 0 )  ;  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

Mg) 

^D(2', 0 ) -0.707107 

^D( 0, 0 ) 0.408248 

^S( 0, 0 ) 0.577350 

O c c u p a t i o n  : ( x y z s ) = ( 1 2 2 0 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

2S+lL(M., Mg) a e 

2 p ( l ' ,  1 / 2 )  1 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0  

2p(l',-l/2) 0.000000 1.000000 
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Table 4.3 continued 

Occupation : (x y z s) = (2 2 2 0) 

Atomic States Spin Factors 

2S+1 

^S( 0, 0 ) 1.000000 

Conf iguration 

O c c u p a t i o n  ;  ( x y z s ) = ( 0 0 0  1 )  

Spin Factors 

a p 

Atomic States 

2S+1 L(M^, M^) 

'S( 0, 1/2) 

"S( 0,-1/2) 

Configuration : sV 

1.000000 

0 .000000  

0 . 0 0 0 0 0 0  

1.000000 

O c c u p a t i o n  : ( x y z s > = ( 1 0 0 1 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

Ms) ap oca PB pa 

^P(l', 0 ) 0. 707107 0. 000000 0. 000000 -0. 707107 

1 ) 0. 000000 1. 000000 0. 000000 0. 000000 

3p(l', -1/2) 0. 000000 0. 000000 1. 000000 0. 000000 

3p(l', 0 ) 0. 707107 0. 000000 0. 000000 0. 707107 
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Table 4.3 continued 

1 2 
O c c u p a t i o n  : ( x y z s ) = ( 2 0 0 1 )  ;  C o n f i g u r a t i o n  ;  s  p  

Atomic States Spin Factors 

M;) a e 

^D(2', 1/2) 0. 707107 0. 000000 

^D( 0, 1/2) -0. 408248 0. 000000 

^S( 0, 1/2) 0. 577350 0. 000000 

^D(2', -1/2) 0. 000000 0. 707107 

^D( 0, -1/2) 0. 000000 -0. 408248 

^S( 0, -1/2) 0. 000000 0. 577350 

O c c u p a t i o n  :  ( x y z s )  = ( 0 1 0 1 )  

Spin Factors 

Configuration : s^p* 

Atomic States 

Kg) 

^P(l", 0 ) 

^P(l", 1 ) 

^P(l",-1 ) 

^P(l", 0 ) 

«P 

0.707107 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.707107 

oux 

0 . 0 0 0 0 0 0  

1 .000000  

0 .000000  

0 .000000  

ee 

0 .000000  

0 .000000 

1.000000 

0 .000000  

pa 

-0.707107 

0 .000000  

0 . 0 0 0 0 0 0  

0.707107 
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Table 4.3 continued 

1 2 
O c c u p a t i o n  : ( x y z s ) = ( 1 1 0 1 )  ?  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

apo, Poux, cxPP eap 

^D(2", 1/2) 0. 707107 -0. 707107 0. 000000 0. 000000 

^D(2", -1/2) 0. 000000 0. 000000 0. 707107 -0. 707107 

^P( 0, 1/2) -0. 408248 -0. 408248 0. 000000 0. 000000 

^P( 0, -1/2) 0. 000000 0. 000000 0. 408248 0. 408248 

4p(l", 1/2) 0. 577350 0. 577350 0. 000000 0. 000000 

^P(l", -1/2) 0. 000000 0. 000000 0. 577350 0. 577350 

4 
P(l" , 3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

^Ptl", -3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

Atomic States 

Mg) 

^D(2", 1/2) 

^D(2",-1/2) 

^P( 0, 1/2) 

^P( 0,-1/2) 

"^Pd", 1/2) 

4 

'P(l",-l/2) 

P(l", 3/2) 

4p(l",-3/2) 

Spin Factors 

cxa3 

0 .000000  0 .  

0 . 0 0 0 0 0 0  0 .  

0.S16497 0. 

0 . 0 0 0 0 0 0  - 0 .  

0.577350 0. 

0 .000000  0 .  

0 .000000  0 .  

0 .000000  0  

pe* 

000000 

000000 

000000 

816497 

.000000 

.577350 

.000000 

.000000 

ocaa 

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

0 .000000  

1.000000 

0 .000000  

ee; 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0  

0 .000000  

0 - 0 0 0 0 0 0  

0 .000000  

0 .000000  

0.000000 

1 .000000  
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 2 1 0  1 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

ap pa oux ee 

^D(l', 0 ) 0 .500000 -0. 500000 0. 000000 0. 000000 

^P(l", 0 ) 0 .500000 -0. 500000 0. 000000 0. 000000 

^D(l', 1 ) 0 .000000 0. 000000 0. 707107 0. 000000 

3p(l", 1 ) 0 .000000 0. 000000 0. 707107 0. 000000 

^D(l', -1 ) 0 .000000 0. 000000 0. 000000 0. 707107 

^P(l", -1 ) 0 .000000 0. 000000 0. 000000 0. 707107 

^D(l', 0 ) 0 .500000 0. 500000 0. 000000 0. 000000 

^P(l", 0 ) 0 .500000 0. 500000 0. 000000 0. 000000 

1 2 O c c u p a t i o n  : ( x y z s ) = ( 0 2 0  1 )  ;  C o n f i g u r a t i o n  ;  s  p  

Atomic States Spin Factors 

^D(2', 

Ms) 

1/2) -0. 707107 0 

3 

.000000 

^D( 0; 1/2) -0. 408248 0 .000000 

^S< 0, 1/2) 0. 577350 0 .000000 

^D(2', -1/2) 0. 000000 -0 .707107 

^D( 0, -1/2) 0. 000000 -0 .408248 

^S( 0, -1/2) G. 000000 0 .577350 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 1 2 0 1 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

M3) ap pa oux. ee 

^D(l", 0 ) 0.500000 -0. 500000 0. 000000 0. 000000 

0 ) 0.500000 -0. 500000 0. 000000 0. 000000 

^D(l", 1 ) 0.000000 0. 000000 0. 707107 0. 000000 

1 ) 0.000000 0. 000000 0. 707107 0. 000000 

-1 ) 0.000000 0. 000000 0. 000000 0. 707107 

3p(l', -1 ) 0.000000 0. 000000 0. 000000 0. 707107 

^D(l", 0 ) 0.500000 0. 500000 0. 000000 0. 000000 

3p(l', 0 ) 0.500000 0. .500000 0. .000000 0. .000000 
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Table 4.3 continued 

1 4 
O c c u p a t i o n  : ( x y z s ) = ( 2 2 0 1 )  ;  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

"s) a e 

^D( 0, 1/2) -0. 816497 0. 000000 

^S( 0, 1/2) 0. 577350 0. 000000 

^D( 0, -1/2) 0. 000000 -0. 816497 

^S( 0, -1/2) 0. 000000 0. 577350 

O c c u p a t i o n  : ( x y z s ) = ( 0 0 1 1 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

M3) ap oux. pp Pa 

^P( 0, 0 ) 0 .707107 0. 000000 0. 000000 -0. 707107 

^P( 0, 1/2) 0 .000000 1. 000000 0. 000000 0. 000000 

^P( 0, -1/2) 0 .000000 0. 000000 1. 000000 0. 000000 

^P( 0, 0 ) 0 .707107 0. 000000 0. 000000 0. 707107 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 1 0 1 1 )  ;  C o n f i g u r a t i o n  :  

Atomic States Spin Factors 

"s) (xPo. &OWX app pap 

^D(l', 1/2) 0. 707107 -0. 707107 0. 000000 0. 000000 

^D(l', -1/2) 0. 000000 0. 000000 0. 707107 -0. 707107 

^P(l", 1/2) -0. 408248 -0. 408248 0. 000000 0. 000000 

^P(l", -1/2) 0. 000000 0. 000000 0. 408248 0. 408248 

'^Pd" , 1/2) 0. 577350 0. 577350 0. 000000 0. 000000 

*P(1", -1/2) 0. 000000 0. 000000 0. 577350 0. 577350 

4 
P(l" , 3/2) 0. 000000 0. 000000 0. .000000 0. 000000 

^P(l", -3/2) 0. ,000000 0. ,000000 0. ,000000 0. ,000000 

Atomic States Spin Factors 

"s) ouxp PPa (XOUX ppp 

^D(l', 1/2) 0. 000000 0 .000000 0. 000000 0. 000000 

^D(l', -1/2) 0. 000000 0 .000000 0. 000000 0. 000000 

^P(l", 1/2) 0. 816497 0 .000000 0. 000000 0. 000000 

^P(l", -1/2) 0. 000000 -0 .816497 0. 000000 0. 000000 

*P(1", 1/2) 0. 577350 0 .000000 0. 000000 0. 000000 

^P(l", -1/2) 0. 000000 0 .577350 0. 000000 0. 000000 

4p(l", 3/2) 0. 000000 0 .000000 1. 000000 0. 000000 

4p(l", -3/2) 0. 000000 0 .000000 0. 000000 1. 000000 
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Table 4.3 continued 

O c c u p a t i o n  ; ( x y z s > = ( 2 0 1 1 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

e* (xa pp 

^D(2", 0 ) 0 .500000 -0. 500000 0. 000000 0. 000000 

^P( 0, 0 ) 0 .500000 -0. 500000 0. 000000 0. 000000 

^D(2", 1 ) 0 .000000 0. 000000 0. 707107 0. 000000 

^P( 0, 1 ) 0 .000000 0. 000000 0. 707107 0. 000000 

^D(2", -1 > 0 .000000 0. 000000 0. 000000 0. 707107 

^P( 0, -1 ) 0 .000000 0. 000000 0. 000000 0. 707107 

^D(2", 0 ) 0 .500000 0. 500000 0. 000000 0. 000000 

^P( 0, 0 ) 0 .500000 0. 500000 0. 000000 0. 000000 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 0 1 1 1 )  ;  C o n f i g u r a t i o n  :  

Atomic States Spin Factors 

"s) (%&(% Poux. ape pap 

^D(l", 1/2) 0. 707107 -0. 707107 0. 000000 0. 000000 

^D(l", -1/2) 0. 000000 0. 000000 0. 707107 -0. 707107 

2p(l', 1/2) -0. 408248 -0. 408248 0. 000000 0. 000000 

"P(l', -1/2) 0. 000000 0. 000000 0. 408248 0. 408248 

4p(l', 1/2) 0. 577350 0. 577350 0. 000000 0. 000000 

*P(1', -1/2) 0. 000000 0. 000000 0. 577350 0. 577350 

4p(l', 3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

^P(l', -3/2) 0. ,000000 0. .000000 0. .000000 0. ,000000 

Atomic States 

Mg) 

^Dvl", 1/2) 

^D(l",-1/2) 

2p(l', 1/2) 

2p(l',-1/2) 

S(l', 1/2) 

*P(1',-1/2) 

*P(1', 3/2) 

^Ftl',-3/2) 

Spin Factors 

otap 

0.000000 0 

0 . 0 0 0 0 0 0  0  

0.816497 0 

0 . 0 0 0 0 0 0  

0.577350 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

PPa 

000000 

- 0 ,  

0 

0 

0 

0 

816497 

000000 

,577350 

.  000000 

.000000  

ouxo. 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

1 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

0 . 0 0 0 0 0 0  

1.000000 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( l l l l )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

^L(M 
1' aPPa p(%a,p 

^D(2', 0 ) 0. 500000 -0. 500000 -0. 500000 0. 500000 

^D( 0, 0 ) -G. 288675 -0. 288675 -0. 288675 -0. 288675 

^D(2', 1 ) 0. 000000 0. 000000 0. 000000 0. 000000 

^D(2' -1 ) 0. 000000 0. 000000 0. 000000 0. 000000 

^D(2', 0 ) 0. 500000 0. 500000 -0. 500000 -0. 500000 

^D( 0, 1 ) 0. 000000 0. 000000 0. OOOOOG G. 000000 

^S( 0, 1 ) 0. 000000 0. 000000 G. 000000 G. 000000 

^D( 0, -1 ) 0. 000000 0. 000000 0. 000000 G. 000000 

^S( 0, -1 ) 0. 000000 0. 000000 G. 000000 0. 000000 

^D( 0, 0 ) -0 .  288675 G. 288675 -G. 288675 0. 288675 

^S( 0 ,  0  )  0. 408248 -0. 408248 0. 408248 -0. 408248 

^S( 0 ,  2 ) 0. 000000 0. 000000 0. 000000 0 000000 

=S( 0 ,  -2 ) 0  .000000 0 000000 0 .000000 0 .000000 

^S( 0, 1 ) 0 .000000 0  000000 0 .000000 0 .000000 

^S(  0 ,  -1 ) 0  .000000 0  .000000  0  .000000  0  .000000 

^sc  0 ,  0 ) G .408248 0  .408248 G .408248 0 .408248 
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Table 4.3 continued 

Atomic States 

Mg) 

^D(2', 0 ) 

^D( 0, 0 ) 

^D(2', 1 ) 

^D(2',-l ) 

^D(2', 0 ) 

^D( 0, 1 ) 

^S( 0, 1 ) 

^D( 0,-1 ) 

^S( 0,-1 ) 

^D( 0, 0 ) 

^S( 0, 0 ) 

^S( 0, 2 ) 

^S( 0,-2 ) 

^S( 0, 1 ) 

^5(0,-1 ) 

^S( 0, 0 ) 

Spin Fac 

0 .000000  

0.577350 

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.000000 

0.000000 

0 .000000  

0.577350 

0.408248 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.000000 

0.000000 

0.408248 

r s  

Pgowx. 

0 . 0 0 0 0 0 0  

0.577350 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

0 .000000  

0.000000 

0 .000000  

-0.577350 

-0.408248 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.403248 

a^oux 

0 .000000  

0.000000 

0.707107 

0.000000 

0 .000000  

-0.408248 

-0.288675 

0.000000 

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000 

0 .000000  

0.500000 

0.000000 

0 .000000 

Poowx 

0 .000000  

0 .000000  

-0.707107 

0 .000000  

0 .000000  

-0.408248 

-0.288675 

0.000000 

0.000000 

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.500000 

0.000000 

0 .000000  
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Table 4.3 continued 

Atomic States 

Mg) 

^D(2', 0 ) 

^D( 0, 0 ) 

^D(2', 1 ) 

^D(2',-l ) 

^D(2', 0 ) 

^D( 0, 1 ) 

^S( 0, 1 ) 

^D( 0,-1 ) 

^S( 0,-1 ) 

^D( 0, 0 ) 

^S( 0 ,  0  )  

^S( 0, 2 ) 

^S( 0,-2 ) 

^S( 0, 1 ) 

^S( 0,-1 ) 

^S( 0 ,  0  )  

Spin Factors 

appp 

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0.707107 -0. 

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0.408248 0. 

0.288675 0. 

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0 .  

0 . 0 0 0 0 0 0  0  

0 . 0 0 0 0 0 0  0  

0.500000 0 

0 . 0 0 0 0 0 0  0  

000000 

000000 

000000 

707107 

000000 

,000000 

. 000000  

.408248 

.288675 

.000000 

. 000000  

.000000 

. 000000  

. 000000  

.500000 

. 000000  

(XOUXP 

0 .000000  

0 .000000  

0 .000000  

0 .000000  

0 .000000  

0 .000000  

0.866025 

0 .000000  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0.500000 

0.000000 

0 . 0 0 0 0 0 0  

cux^cx 

0 .000000  

0 .000000  

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0.816497 

•0.288675 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0.500000 

0 .000000  

0 . 0 0 0 0 0 0  
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Table 4.3 continued 

Atomic States 

"L(M^, Mg) 

^D(2', 0 ) 

^D( 0, 0 ) 

^D(2', 1 ) 

^D(2',-l ) 

^D(2', 0 ) 

^D( 0, 1 ) 

^S( 0, 1 ) 

^D( 0,-1 ) 

^S( O.-l ) 

^D( 0, 0 ) 

^S( 0 ,  0  )  

^S( 0, 2 ) 

^S( 0,-2 ) 

^S( 0, 1 ) 

^S( 0,-1 ) 

^S( 0, 0 ) 

Spin Factors 

ppap 

0 - 0 0 0 0 0 0  

0.000000 

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000 

-0.816497 

0.288675 

0 .000000  

0 .000000  

0 .000000  

0.000000 

0 . 0 0 0 0 0 0  

0.500000 

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

0 .000000  

-0.866025 

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

0 . 0 0 0 0 0 0  

0.500000 

0.000000 

cuxaa 

0 .000000  

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

0 .000000 

0 .000000  

0 .000000  

0 .000000  

1 .000000  

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

eeee 

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

0 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000 

0 .000000 

0 .000000 

0 .000000  

0 .000000  

1 .000000  

0 .000000  

0 .000000  

0 .000000  
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Table 4.3 continued 

1 4 
O c c u p a t i o n  : ( x y z s ) = ( 2 1 1 1 )  ;  C o n f i g u r a t i o n  ;  s  p  

Atomic States Spin Factors 

"s) oiPa Poux aPP pap 

^D(l", 1/2) 0. 707107 -0. 707107 0. 000000 0. 000000 

^D(l", -1/2) 0. 000000 0. 000000 0. 707107 -0. 707107 

2p(l', 1/2) -0. 408248 -0. 408248 0. 000000 0. 000000 

^P(l' , -1/2) 0. 000000 0. 000000 0. 408248 0. 408248 

4p(l', 1/2) 0. 577350 0. 577350 0. 000000 0. 000000 

*P(1', -1/2) 0. 000000 0. 000000 0. 577350 0. 577350 

*P(1', 3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

*P(1', -3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

Atomic States 

Mg) 

1/2) 

^D(1",-1/2) 

2p(l', 1/2) 

2p(l',-1/2) 

^P(l', 1/2) 

*P(1',-1/2) 

4p(l', 3/2) 

*P(1',-3/2) 

Spin Factors 

cwx3 

0 .000000  

0.000000 

0.816497 

0 .000000  

0.577350 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

PPa 

0 . 0 0 0 0 0 0  

0 .000000  

0 . 0 0 0 0 0 0  

-0.816497 

0 . 0 0 0 0 0 0  

0.577350 

0 . 0 0 0 0 0 0  

0 .000000  

ouxa 

0 .000000  

0.000000 

0 .000000  

0 .000000  

0 .000000  

0 .000000  

1 .000000  

0 . 0 0 0 0 0 0  

eee 

0 . 0 0 0 0 0 0  

0.000000 

0.000000 

0 .000000  

0 .000000 

0 .000000 

0 .000000  

1 .000000 
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Table 4.3 continued 

Occupation : (x y z s) = (0 2 1 1) ; Configuration : s^p^ 

Atomic States Spin Factors 

Pot oux pp 

^D(2", 0 ) -0.500000 0. 500000 0. 000000 0. 000000 

^P( 0, 0 ) 0.500000 -0. 500000 0. 000000 0. 000000 

^D(2", 1 ) 0.000000 0. 000000 -0. 707107 0. 000000 

^P( 0, 1 ) 0.000000 0. 000000 0. 707107 0. 000000 

^D(2", -1 ) 0.000000 0. 000000 0. 000000 -0. 707107 

^P( 0, -1 ) 0.000000 0. 000000 0. 000000 0. 707107 

^D(2", 0 ) -0.500000 -0. 500000 0. 000000 0. 000000 

^P( 0, 0 ) 0.500000 0. 500000 0. 000000 0. 000000 
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Table 4.3 continued 

1 4 O c c u p a t i o n  : ( x y z s ) = ( 1 2 1 1 )  ;  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

"s) a3a Pota cxPP pap 

^D(l' 1/2) 0. 707107 -0. 707107 0. 000000 0. 000000 

^D(l' -1/2) 0. 000000 0. 000000 0. 707107 -0. 707107 

2p(l" 1/2) -0. 408248 -0. 408248 0. 000000 0. 000000 

2p(i" -1/2) 0. 000000 0. 000000 0. 408248 0. 408248 

4p(i„ 1/2) 0. 577350 0. 577350 0. 000000 0. 000000 

4p( 1 " -1/2) 0. 000000 0. 000000 0. 577350 0. 577350 

^P(l" 3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

4p(l" -3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

Atomic States Spin Factors 

aap ppa (XOUX 

^D(l', 1/2) 0. 000000 0. 000000 0. 000000 

^D(l', -1/2) 0. 000000 0. 000000 0. 000000 

2?(1 " ̂ 1/2) 0. 816497 0. 000000 0. 000000 

^P(l", -1/2) 0. 000000 -0. 816497 0. 000000 

4 
P(l" , 1/2) 0. 577350 0. 000000 0. 000000 

"^Pd" , -1/2) 0. 000000 0. 577350 0. 000000 

4 
P(l" , 3/2) 0. 000000 0. 000000 1. 000000 

4 
P(l" , -3/2) 0. 000000 0. 000000 0. 000000 

6BB 

0 .000000  

0 .000000  

O.OOOOOO 

0 . 0 0 0 0 0  

0 .000000  

0 .000000  

0 .000000 

1.000000 
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Table 4.3 continued 

O c c u p a t i o n  :  ( x y z s ) = ( 2 2  1 1 )  Configuration : s^p^ 

Atomic States 

Mg) 

^P{ 0, 0 ) 

^P( 0, 1 ) 

^P( 0,-1 ) 

^P( 0, 0 ) 

oDin ractors 

ap 

0.707107 

0 .000000  

0 .000000  

0.707107 

owx. 

0 .000000  

1 .000000  

0 . 0 0 0 0 0 0  

0 .000000  

ee 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

1.000000 

0 .000000  

pot 

-0.707107 

0 .000000  

0 .000000 

0.707107 

O c c u p a t i o n  :  ( x y z s ) = ( 0 0 2  1 )  

Spin Factors 

a p 

Conf iguration 

Atomic States 

2S+1 
L(Mi, M3) 

-D( 0, 1/2) 

'S( 0, 1/2) 

-D( 0,-1/2) 

'S( 0,-1/2) 

0.816497 

0.577350 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

0 .000000  

0 . 0 0 0 0 0 0  

0.816497 

0.577350 

s^p2 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 1 0 2 1 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

"s> pa oux ee 

^D(l", 0 ) -0. 500000 0. 500000 0.000000 0. 000000 

lp(l'. 0 ) 0. 500000 -0. 500000 0.000000 0. 000000 

^Dd", 1 ) 0. 000000 0. 000000 -0.707107 0. 000000 

3p(l', 1 ) 0. 000000 0. 000000 0.707107 0. 000000 

^D(l", -1 ) 0. 000000 0. 000000 0.000000 -0. 707107 

3p(l', -1 ) 0. 000000 0. 000000 0.000000 0. 707107 

^D(l", 0 ) -0. 500000 -0. 500000 0.000000 0. 000000 

"P(l' , 0 ) 0. 500000 0. 500000 0.000000 0. 000000 

1 4 
O c c u p a t i o n  : ( x y z s ) = ( 2 0 2 1 )  ;  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

Mg) a P 

^D(2', 1/2) 0 .707107 0. 000000 

^D( 0, 1/2) 0 .408248 0. 000000 

to
 

V)
 

o
 

1/2) 0 .577350 0. 000000 

^D(2', -1/2) 0 .000000 0. 707107 

^D( 0, -1/2) 0 .000000 0. 408248 

^S( 0, -1/2) 0 .000000 0. 577350 
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Table 4.3 continued 

Occupation : ( X y z s) = (0 1 2 1) ; Conf iguration : slp3 

Atomic States Spin Facto rs 

M^) *e Pa oux ee 

^D(l', 0 ) -0.500000 0 .500000 0.000000 0.000000 

lp(l". 0 ) 0.500000 -0 500000 0.000000 0.000000 

^D(l', 1 ) 0.000000 0 .000000 -0.707107 0.000000 

^P(l", 1 ) 0.000000 0 .000000 0.707107 0.000000 

^D(l' 1 ) 0.000000 0 .000000 0.000000 -0.707107 

3p(l"r-1 ) 0.000000 0 .000000 0.000000 0.707107 

^D(l', 0 ) -0.500000 -0 .500000 0.000000 0.000000 

3p(l", 0 ) 0.500000 0 .500000 0.000000 0.000000 
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Table 4.3 continued 

1 4 
O c c u p a t i o n  : ( x y z s ) = ( 1 1 2 1 )  ;  C o n f i g u r a t i o n  :  s  p  

Atomic States Spin Factors 

^L(M 
1' "s) a3a 3o«x 

^D(2 1/2) 0. 707107 -0. 707107 0. 000000 0. 000000 

^D(2 -1/2) 0. 000000 0. 000000 0. 707107 -0. 707107 

^P( 0, 1/2) -0. 408248 -0. 408248 0. 000000 0. 000000 

0, -1/2) 0. 000000 0. 000000 0. 408248 0. 408248 

0, 1/2) 0. 577350 0. 577350 0. 000000 0. 000000 

^P( 0, -1/2) 0. 000000 0. 000000 0. 577350 0. 577350 

^P{ 0, 3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

^Pi 0, -3/2) 0. 000000 0. 000000 0. 000000 0. 000000 

Atomic States Spin Factors 

^L(M 
1' "s' 

otap PPa (XOUX pee 

^D(2", 1/2) 0 .000000 0. 000000 0. 000000 0. 000000 

^D(2", -1/2) 0 .000000 0. 000000 0. 000000 0. 000000 

^P( 0, 1/2) 0 .816497 0. 000000 0. 000000 0. 000000 

^P( 0, -1/2) 0 .000000 -0. 816497 0. 000000 0. 000000 

^P( 0, 1/2) 0 .577350 0. 000000 0. 000000 0. 000000 

'^P( 0, -1/2) 0 .000000 0. 577350 0. 000000 0. 000000 

"^PC 0, 3/2) 0 .000000 0. 000000 2 000000 0. 000000 

0, -3/2) 0 .000000 0. 000000 0. 000000 1. 000000 
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Table 4.3 continued 

O c c u p a t i o n  : ( x y z s ) = ( 2 1 2 1 )  ;  C o n f i g u r a t i o n  :  

Atomic States Spin Factors 

aa ee Pot 

^P(l", 0 ) 0. 707107 0. 000000 0. 000000 -0. 707107 

^P(l", 1 ) 0. 000000 1. 000000 0. 000000 0. 000000 

^P(l", -1 ) 0. 000000 0. 000000 1. 000000 0. 000000 

^P(l", 0 ) 0. 707107 0. 000000 0. 000000 0. 707107 

O c c u p a t i o n  :  ( x y z s )  = ( 0 2 2 1 )  Conf iguration 

Atomic States 

Mg) 

^D(2', 1/2) 

^D( 0, 1/2) 

^S( 0, 1/2) 

^D(2',-1/2) 

^D( 0,-1/2) 

^S( 0,-1/2) 

Spin Factors 

a 

-0.707107 

0.408248 

0.577350 

0 . 0 0 0 0 0 0  

0 .000000  

0 .000000  

P 

0 .000000  

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

-0.707107 

0.408248 

0.577350 
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Table 4.3 continued 

O c c u p a t i o n  ;  ( x y z s )  = ( 1 2 2 1 )  

Spin Factors 

Configuration : s^p^ 

Atomic States 

Mg) 

^P(l', 0 ) 

^P(l', 1 ) 

^P(l',-1 ) 

^P(l', 0 ) 

<xP 

0.707107 

0 .000000  

0 .000000  

0.707107 

(xa 

0 .000000  

1.000000 

0 . 0 0 0 0 0 0  

0 . 0 0 0 0 0 0  

pp 

0 .000000  

0 .000000  

1 .000000 

0 .000000  

Pa 

-0.707107 

0 . 0 0 0 0 0 0  

0 .000000  

0.707107 

O c c u p a t i o n  ;  ( x y z s )  =  ( 2 2 2 1 )  ;  C o n f i g u r a t i o n  :  s ^ p ^  

Atomic States Spin Factors 

M g )  a  e  

^S(  0 ,  1 /2 )  1 .000000  0 .000000  

^ S (  0 , - 1 / 2 )  0 . 0 0 0 0 0 0  1 . 0 0 0 0 0 0  
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( c) 

A complication exists for the near-degenerate atomic 

configurations s^'p^ and s^p""^^, since they give rise to some 

states with identical overall symmetry. That is 

2 2 
s and p both generate a state. 

2 1 
s p and p both generate a L state. 

2 2 4 s p and p both generate •^S, -^D and 

2 3 5 
s p and p both generate 

2 
a P state, 

2 4 6 
s p and p both generate a state. 

In such cases, the actual atomic state functions are linear 

2S+1 2S+1 
combinations and of the one-configuration 

functions. These linear combinations are given by orthogonal 

transformation 

Is^d" ,M ) a b 1 ' s 

,pn+2 -b a 

2 1 
( a  +  b  = 1 ) ,  w h e r e  t h e  n u m e r i c a l  v a l u e s  o f  a  a n d  b  r e s u l t  

from atomic MCSCF calculations for the particular states of 

the particular atoms. It is readily verified that the same 

orthogonal transformations which hold between the functions 
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ls^p",L>, and the functions |L^>, (Lg) are also valid 

if, in all four functions, one replaces by ' or as 

introduced by Equation (4.28). 

Since and L2 are the correct theoretical state 

functions, the atomic correlation correction must be 

calculated with reference to these wavefunctions and, 

consequently, the composite functions, too, must be 

constructed from them. In cases where this applies, the 

orthogonal expansion of atomic antisymmetrized products in 

terms of the one-configuration atomic states aquired from 

Table 4.3 must therefore be followed by the expansion of the 

one-configuration states in terms of and L2 in order to 

obtain the expansions of Equation (4.25). Consider for 

example the occupations (xyzs) = (2120) and (xyzs) = (0122) of 

5 2 3 
the configurations p and s p respectively. From column a of 

subtable (2120) of Table 4.3, one finds 

At (xot) ( xg) ( za) ( zg) (ya) } = Ip^ ^P(l",l/2)> 

2 
From column a of subtable (0120) one finds, by adding s , 

À£(sa)(sp)(za)(zP)(ya)} 

= |s2p3 2p(i",l/2)> - Is^p] ̂ D(l',l/2)>}/i2" 

2 3 5 2 
Since s p and p both yield a P state, one must therefore 

2 2 
transform to P^ and P^r which yield the expansions 
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A£(x(x) (xp) (za) (2p) (ya)} = -bt l*M/2) > 

+ a|2p2(l",l/2)> 

At(sa) (sp)(za)(zg)(ya)} = {a|^P^(l",l/2)> 

+ b|2p2(l",l/2)> - |s2p3 2D(l',l/2)>}/f2' . 

where the coefficients a and b must be known from an 

2 
independent calculation of the two P states on the atom in 

question. 

4. Program TMAT 

The purpose of the program TMAT is to expand all 

molecular SAAPs in terms of composite functions (CFs) as given 

in Equation (4.12) and the atomic states composite functions 

are also identified. An input description to the program can 

84 
be found in the SKUNK reference manual. 

Before this program is called upon, SAAPs in terms of 

localized orbitals (PLMOs) have to be formed using the program 

SAAP described in Chapter II. The program reads in the SAAPs 

and generates the Serber-type spin functions corresponding to 

the SAAPs. In anticipation of permutation among orbitals, the 

singly occupied portion of each SAAP is then decomposed into a 

linear combination of products of spin-orbitals. For example, 

for the SAAP 
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where 0^ = (ap-pa)/f?f it becomes 

î is now, in the program, effectively two products of 

spin-orbitals as defined, with coefficients 1/42 and -1/42 

respectively. The space orbitals are then permuted such that 

they are grouped by atom and, within an atom, all doubly 

occupied orbitals are put before the singles. Among the 

singly occupied orbitals, x comes before y, y before z and z 

before s, if they exist. This order coincides with the one 

used in the expansions of the atomic states in Table 4.3. The 

spin part of the products is then changed by the same 

permutation in the manner described in connection with 

Equation (4.19). With the space product and spin factor for 

each atom at hand, the program then looks up the pre-stored 

data given by Table 4.3 to obtain the atomic states and 

coefficients. The antisymmetrized products of atomic states 

from all atoms form the composite functions (CFs). Some of 

the CFs deduced from different SAAPs may be the same. Only 

the unique ones are kept and coefficients retained by 

summation. 

This program also identifies the near-degenerate 

configurations s^p" and p"^^ and transform them into 
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and 

a s^p" + b 

-b ,2p" + a pM+Z (4.29) 

where a and b are real numbers supplied as input to the 

program. The energy corrections for the composite functions 

from data compiled from information available in the 

references mentioned in Section B.5. A collection of 

currently available correlation plus relativistic corrections 

for all atomic states arising from the s'^p"' valence 

configurations has been compiled by the author et al. 

The program THAT as it stands right now can only handle 

diatomic molecules, but the basic algorithm is the same for 

any number of atoms and generalization to polyatomic molecules 

should be straightforword. 

5. Program lACC 

The program lACC computes the intraatosic correlation 

correction to the FORS wavefunction in two ways; (i) by using 

the first order perturbation expression in Equation (4.16) and 

(ii) by diagonalizing the corrected Hamiltonian. So far, the 

incorporation of the correlation-corrected Hamiltonian matrix 

^^SAAP^^SAAPj the MCSCF procedure has not yet been 

implemented. An input description to the program can be found 

84 
in the SKUNK reference manual. 

In order to obtain the corrected Hamiltonian, it needs to 
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CF 
have the correction matrix AE in Equation (4.14), the 

transformation matrix T in Equation (4.15) and also the 

configuration mixing matrix U, if applicable. The matrix U is 

the mixing between configurations of types s^p^ and p^^^ as 

described in Equation (4.29). All this information is 

produced by the program TMAT, although it may also be supplied 

or supplemented from the input stream to the program. 

6. Illustrative application to the ground state of imidogen 

The procedure is best illustrated with an example. Let 

us consider the ground state of the imidogen (NH) molecule. 

3 -
For the Z symmetry, there are nine SAAPs in terms of 

PLMOs. All of them can be denoted by the symbols 

|u^v^l>, lu^vwl> or |u^vw2>, 

which are defined as follows 

= 2"3/2 ACk^u^'^xye^} (4.30) 

iu^vwl> = 2 ^ ACk^u^vwxy©^} (4.31) 

|u^vw2> = 2~^ A£k^u^vwxy©2} (4.32) 

where k, x, y denote the PLMOs corresponding to the atomic 

orbitals is, 2p^ and 2Py on nitrogen respectively and u, v, w 

can be any one of the PLMOs s, z, h which correspond to the 
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atomic orbitals 2s, 2p^ on nitrogen and Is on hydrogen 

respectively. The spin eigenfunctions are defined as 

0^ = (ap-pa) (ap-pa) (ap-pa)owx/2^^^ (4.33) 

©2 = (ap-pa) ((xp-3oi)£{aP+Pa)(xa-o«x(aP+Pa) }/4 (4.34) 

The nine possible SAAPs are listed as column headings for the 

matrix given in Table 4.4. 

On the other hand, there exist eleven different single 

configuration composite functions. They are denoted as 

follows 

InmSLM^Mg/n'S'M^) 

= A*{|N s"p™ s"' ' { 0 ) > } (4.35) 

where it has always L' =0 , an S-state. The eleven composite 

functions are listed as headings for the rows of the matrix in 

Table 4.4. 

Table 4.4 expresses the nine SAAPs of symmetry in 

terms of the eleven composite functions. The matrix elements 

in the taile are obtained by the procedure outlined in Section 

C. 3. 

A mixing of one-configuration atomic states occurs for 

the configurations |N s^p^ ^P(0,1)> and |N p^ ^P(0,1)> of the 

nitrogen atom. The appropriate linear combinations are 

denoted by 
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Table 4.4. Expansions SAAPs of NH in terms of CPs 

1 nm S L "l "s / n S 1s^zhl) |s^zh2> 1z^shl> 

123 1/2 D 0 1/2 / 1/2 l/2> - J  1/3 - J 2 / 3  

123 3/2 S 0 1/2 / 1/2 l/2> - 4  1 /  6  i 1/12 

123 3/2 S 0 3/2 / 1/2 -l/2> 4 1/2 -1/2 

114 1/2 P 0 1/2 / 1/2 l/2> -U/3 

1 14 3/2 P 0 1/2 / 1/2 l/2> -Jl/6 

114 3/2 P 0 3/2 / 1/2 -l/2> i 1/2 

124 1 P 0 1 / 0 0> 

122 1 P 0 1 / 2 0 0> 

1 04 1 P 0 1 / 2 0 0> 

113 1 D 0 1 / 2 0 0> 

113 1 S 0 1 / 2 0 0> 
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123 

|z^sh2> |s^z^l> Is^h^i) |z^h^l> |h^szl> |h^sz2> 

-J 2/3 

il/12 

-1/2 

- J l/3 J 2/3 

J  2/3 J l/3 
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|N22(04)1P01> = IN s2p2(p4) 3p(0,l)> , (4.36) 

|N04(22)1P01> = IN p*(s2p2) ^P(0,1)> . (4.37) 

An MCSCF calculation of the free nitrogen atom yields the 

orthogonal transformation 

Nitrogen i s^p^ ^P(0,1)> Ip'^ ^P(0,1)> 

Is^p^(p^) ^P(0,1)> 0.9900 -0.1414 

|p4(s2p2) ^P(0,1)> 0.1414 0.9900 

In order to obtain the expansions of the molecular SAAPs 

in terms of the actual atomic state composite functions, one 

must premultiply the matrix given in Table 4.4 by the matrix 

transformation given in Table 4.5. The resulting matrix is 

matrix T occurring in Equation (4.12). 

Table 4.6 contains the results of FORS and the FORS-IACC 

calculations with a nitrogen (14s,7p,2d/5s,3p,2d) basis and a 

hydrogen (5s,2p/3s,2p) basis of even-tempersd gaussian 

primitives, for which the superposition error is negligible. 

Given are the results corresponding to the equilibrium 

distance = 2 bohr and the separated atom distance = 1000 

bohr. The first row lists the energies obtained for the 

ground state. The next nine rows list the expansion 

coefficients of the wavefunction in terms of the SAAPs. The 
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Table 4.5. Composite functions for NH in terms of atomic 

states including s^p"-p^^^ configuration 

interaction 

No. Composite function 

1 123 1/2 D 0 1/2 / 1 1/2 l/2> 

2 123 3/2 S 0 1/2 / 1 1/2 l/2> 

3 123 3/2 S 0 3/2 / 1 1/2 -l/2> 

4 114 1/2 P 0 1/2 / 1 1/2 l/2> 

5 114 3/2 P 0 1/2 / 1 1/2 l/2> 

6 114 3/2 P 0 3/2 / 1 1/2 -l/2> 

7 124 1 P 0 1 / 1 0 0> 

122 1 P 0 1/2 0 0> 104 1 P 0 1/2 0 0> 

S j22 1 P 0 1 / 2 C 0> C.9S00 -0.1414 

9 I 04 1 P 0 i / 2 0 0> 0.1414 0.9900 

10 |13 1 D 0 1 / 2 0 0> 

11 113 1 S 0 1 / 2 0 0> 
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Table 4.6. Energies and wavefunctions of FORS and FORS-IACC 
calculations for the x Z ground state of NH 

Internuclear distance 
FORS 

Re Rco 

FORS+IACC 

Total energy(hartree) -55.0025 -54 .9002 -55.2501 -55.1150 

1 s ̂zhl) .6621 .8165 .6457 .8165 

1 s ̂zh2> -.0466 .5773 -.0350 -.5773 

1 Z ̂shl> .3961 .0 .3760 .0 

1 Z ̂sh2> -.0610 .0 -.0510 .0 

1 s 2z 2l> .5474 .0 .5694 .0 

1 s 2h 2l> .2253 .0 .2140 .0 

1 2 2h ,^1> .0885 .0 .0927 .0 

\h L^SZl > -.2469 .0 -.2426 .0 

1 h sz2> .0193 .0 .0220 .0 

123 1/2 D 0 1/2 /I 1/2 l/2> -.3442 .0 .3442 .0 

123 3/2 S 0 1/2 /I 1/2 l/2> -.2837 -.5 -.2737 -.5 

i 23 3/2 S 0 3/2 /I 1/2 -1/2/ . 4314^ • S6&0 4741 S66C 

114 1/2 P 0 1/2 /I 1/2 1/2) -.1633 .0 -.1755 .0 

i14 3/2 ? 0 1/2 /I 1/2 l/2> -.1683 .0 -.1682 .0 

114 3/2 P 0 3/2 /I 1/2 -l/2> .2915 .0 .2913 .0 

124 1 P 0 1 /l 0 0> .5474 .0 .5694 .0 

122 i P 0 1 /2 0 0> .2105 .0 .1987 .0 

1 04 1 p 0 1 /2 0 0> . 1195 .0 . 1220 .0 

113 1 0 0 1 /2 0 0> .1583 .0 .1580 .0 

1 13 1 s 0 1 /2 0 0) -.1905 .0 -.1853 .0 
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final eleven rows list its expansion coefficients in terms of 

the atomic state composite functions which were given in Taible 

4.5. 

From the first line in Table 4.6, one obtains the binding 

energies 

AE(FORS) = 0.1023 hartree = 2.78 eV 

and AE(FORS-IACC) = 0.1350 hartree = 3.68 eV. 

An SCF calculation yields AE(SCF) = 2.06 eV. The experimental 

value is 3.85 eV. 

Further applications and numerical results of the 

FORS-IACC approach is given in the next section. 

D. Quantitative Results for Diatomic Molecules 

The basic principles and the mathematical formulations of 

the FORS model and the FORS lACC model for molecular 

calculations were outlined in Reference 14 and the preceding 

sections respectively. Hhile the FORS wavefunctions are 

expected to recover non-dynamical, degeneracy-type correlation 

energy changes, FORS lACC wavefunctions are expected to 

recover also dynamical correlation energy changes that occur 

along paths of chemical reactions. 

During the formation of diatomic molecules, there occur 

extensive rearrangements of the electronic structure of the 
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combining atoms, and it is for this reason that the 

theoretical reproduction of diatomic dissociation curves 

presents one of the most severe tests of the ability of any 

electronic structure theory to predict quantitatively energy 

changes that occur during chemical reactions. Furthermore, 

extensive and accurate experimental information is available 

for these molecules^, so that the performance of any theory 

can be readily assessed without any ambiguity. 

In the present investigation, there are reported the 

results of applying the aforementioned two models to the 

calculations of binding energies of a series of diatomic 

molecules. Considering the conceptual and operational 

simplicity of the models, their quantitative performance is 

gratifying. 

1. Basis sets 

In order to test the effectiveness of the proposed models 

in a credible fashion, it is essential that any errors 

associated with the limitation of the basis set be smaller 

than those errors for which the model is to be held 

responsible. For this reason, very large atomic basis sets 

were employed in the present calculations, typically a 

(14s,7p,2d) even-tempered gaussian primitive set^ contracted 

O 
in Raffenetti-fashion to a (5s,3p,2d) basis which corresponds 

to a basis of "triple zeta plus polarization" or better 

quality. In Table 4.7, there are listed the basis sets for 
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Table 4.7. Basis sets and basis set errors in SCF 
calculations of atoms and diatomic molecules 

Atomic Atomic Polarization Molecular 

Molecule basis set^ error^(mh) function^ error^Xmh) 

Homonuclear molecules 

"2 10s3pld/5s3pld 0.005 Cp=0.3,1.3,5.4 

Cd=1.96 

0.01 

"2 632p/3a2p 0.16 Cp=0.4,1.6 0.54 

12s3pld/6s3pld 0.16 Çp=0.0678,0.264, 

1.03, Cd=0.275 

0.3 

«2 1437p2d/433p2d 0.16 ^ = 0.145,0.913 3.5 

S 1437p2d/4s3p2d 0.32 Gj=0.2,1.0 4.7 

^2 
14s7p2d/5s3p2d 0.57 Gj=0.2,1.0 7.5 

O2 14s7p2d/4s3p2d 0.98 Cj=0.5,1.6 7.9 

^2 14s7p7.d/4s3p2d 1.57 C^=0.5,1.6 6.0 
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Molecular error in heteronuclear molecules (mh) 

NO® 5.9 CN® 4.0 NH^ 2.27 

CO® 6.3 BH^ 0.48 OH* 2.06 

BO® -1.1 CH? 0.78 FH? 3.66 

^ Even-tempered gauasian basis of Reference 11. 

^ Error of SCF calculation with respect to the exact 
Hartree-Fock limit for the ground states. See Reference 11. 

^ f5ee Reference 10. 

Error of SCF calculation from with respect to SCF 
calculation with extensive exponential basis set for molecular 
ground «tates. 

® Basis set as above. 

^ Basis set for NO is 14s7p2d/5s7p2d for both atoms. 

^ Basis set on hydrogen for all hydrides cited is the 
6s2p/3s2p set. 
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the various atoms and their performance in the atomic and 

molecular SCF calculations. The intraatomic error increases 

from 0.1 millihartree in Li to 1.6 millihartree in F. It 

is safe to assume that, with this accuracy, basis set 

superposition errors leading to fortuitously good binding 

energies will be negligible. The molecular errors increase 

from 0.3 millihartree in Li^ to about 8 millihartree in 0^• 

They are due to omission of f polarization orbitals, and, 

perhaps, to insufficient optimization of d-orbitals. 

2. FORS calculations 

The calculations reported here pertain to the ground 

states of diatomic molecules at their experimental equilibrium 

distances. The theoretical minima of SCF calculations often 

occur at smaller distances, whereas FORS calculations tend to 

yield slightly elongated bonds. In either cases, the 

calculated dissociation energies would increase only 

insignificantly by geometry optimization. 

All atoms, except hydrogen, contribute a doubly filled 

core orbital, namely the Is AO, and four reactive CGOs 

(configuration generating orbitals), namely 2s, 2p^, 2Py and 

2p^. The number of configurations obtained by allowing for 

all possible couplings between the CGOs in a molecule, i.e., 

the dimension of the full valence space, depends upon the 

number of electrons. It is largest when there are about as 

many electrons as there are orbitals. 
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In Table 4.8, there are listed various data for the 

molecules considered which are pertinent to the reported 

calculations, namely the symmetry of the molecular ground 

state, the symmetries of the ground states of the separated 

atoms, the internuclear equilibrium distance and the dimension 

of the full reaction space. The number listed for this 

dimension is actually the number of spin-adapted 

antisymmetrized products (SAAPs) which constitute the 

practical basis of our calculational procedure. It is 

possible to form certain linear combinations with fixed 

coefficients of the SAAPs with incompletely filled ^-shells, 

yielding "configuration state functions (CSFs)" which belong 

to the appropriate irreducible representations of or 

The number of such CSFs with independently variable 

coefficients is often smaller than the number of SAAPs listed. 

The calculations were performed with the ALIS system for 

12 
molecular calculations . The generation of the Full Reaction 

Space is accomplished by a program called SAAP which is 

described in detail in Chapter II. The resulting quantitative 

data are listed in Table 4.9, namely the SCF and FORS energies 

for the molecules and the separated atoms. The atomic FORS 

energies differ from the SCF energies for boron and carbon 

because the ground states of the two atoms involve 

2 3 2 2 4 
configuration interactions: s p and p in B, s p and p in C. 

(See Section IV.C.3(c)). 
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Table 4.8. Characterization of Full Reaction Space of ground 
state of some diatomic molecules 

Equilibrium No. of States of 
Molecule Symmetry distance(bohr) SAAPs* Separated Atoms 

Homonuclear molecules 

"2 
1.4 2 ^S + ̂ S 

Li^ 5.07 8 ^S + ^S 

^2 3.0905 136 2p ^ 2p 

S 2.3897 264 3p ^ 3p 

^2 
2.068 176 '̂ S + '̂ S 

O2 2.2817 44 3p ^ 3p 

^2 
2.68 8 2p ^ 2p 

Heteronuclear molecules 

CN 2.2144 616 + '̂ S 

BO 2.2977 616 2p ̂  3p 

CO 2.132 316 3? ̂  3p 

NO H 2.1747 

Hydrides 

252 "̂ S + 

BH h* 2.3289 19 ^P + ̂ S 

CH "n 2.1163 18 ^P + ̂ S 

NH 2.0 9 + ^S 

OH -n 1.8324 10 3p + 2g 

FK 1.7325 8 ^P + 2g 

^ In terms of symmetry adapted molecular orbitale. 
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Table 4.9. Total energies from SCF and FORS calculations 

Energies (in hartrees) 
Molecule ' Atom < 

Molecule SCF FORS SCF FORS 

Homonuclear molecules 

Hz" -1.1336 -1.1521 -0.5 -0 .5 

"2̂  
-1.1331 -1.1514 -0.4998 -0 .4998 

"2 
-14.8712 -14.9006 -7.4326 -7 .4326 

=2 -49.0874 -49.2180 -24.5289 -24 .5601 

-75.4015 -75.6373 -37.6883 -37 .7056 

«2 -108.9853 -109.1345 -54.4004 -54 .4004 

°2 -149.6575 -149.7627 -74.8084 -74 .8084 

-198.7641 -198.8444 -99.4078 -99 .4078 

Heteronuclear molecules 

CN -92.2192 -92.3708 see above 

BO -99.5566 -99.6782 see above 

CO -112.7829 -112.9144 see above 

NO -129.2894 -129.4055 see above 

Hydrides 

BH -25.1309 -25.1858 see above 

CH -38.2786 -38.3135 see above 

NH -54.9756 -55.0026 see above 

OH -75.4188 -75.4432 see above 

FH -100.0666 -100.0909 see above 

a Basis set is 10s3pld/5s3pid. 
h Basis set is 6s2p/3s2p. 
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From the data in Tsible 4.9, one deduces the binding 

energies listed in Tcible 4.10. An appropriate measure of the 

effectiveness of the FORS model is the fraction of the 

correlation contribution to the binding energy which is 

recovered by the model, as defined by 

CAE(FORS) - AE(SCF)} / £ûE(exp) - AE(SCF)} 

where 

AE = E(molecule) - E(separated atoms) 

is the binding energy. It is seen that in most cases the FORS 

model recovers between 70% and 90% of the correlation error. 

By and large, the model is more effective when the number of 

valence electrons is smaller than the number of valence 

orbitals. In absolute values, the remaining errors lie 

between 5 and 30 Kcal/mole. This is larger than the 2-5 

Kcal/mole error attributable to basis set deficiencies and it 

is still larger than the accuracy desired for many chemical 

predictions. It should be noted, however, that dissociation 

of diatomic molecules involves extreme changes in electron 

correlations. In many reactions between larger molecules, the 

changes in electron correlations are much less severe and the 

FORS model can then be expected to yield energies accurate to 

a few Kcal/mole. 
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Table 4.10. Dissociation energies of diatomic molecules 

Correlation Error of FORS 
Molecule SCF FORS exp recovered approximation 

(eV) (eV) (eV) (%) (Kcal/mole) 

Homonuclear molecules 

H " 3.635 4.14 4.748 45 14.1 

"2^ 
3.629 4.13 4.748 45 14.3 

"2 0.16 0.96 1.068 88 2.5 

=2 0.81 2.64 3.08 81 10.1 

^2 
0.68 6.14 6.32 97 4.1 

«2 5.02 9.06 9.905 83 19,5 

1.12 3.98 5.213 70 28.4 

^2 
-1.40 0.78 1.658 71 20.2 

Heteronuclear molecules 

CN 3.55 7.21 7.89 84 15.7 

BO 5.97 8.42 8.40 101 -0.5 

CO 7.79 10.89 11.226 90 7.7 

NO 2.19 5.35 6.615 71 29.2 

Hydrides 

BH 2.78 3.42 3.57 81 3.5 

CH 2.46 2.95 3.63 41 15.7 

NH 2.06 2.79 3.85 41 24.4 

OH 3.01 3.67 4.62 41 21.9 

FH 4.33 4.99 6.12 37 26.1 

^ Molecular data were obtained from Huber and Kerzbegg^ 
except for D^(NH) from Piper and atomic data from Moore 

~ Basis set is 10s3pad/5s3pld. 

^ Basis set is 6s2p/3s2p. 
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The present calculations allow us to make a prediction 

regarding the BO molecule which has received little 

experimental or theoretical attention. So far, its bond 

energy has not been well determined experimentally; published 

values range from 7.4 eV to 9.2 eV. Since in all cases, 

except for BO, the FORS model recovers 70-90% of the binding 

energy correlation error, and since it recovers 84% in the 

isoelectronic CN molecule, it seems most likely that a similar 

result is also valid for BO. Assuming that (85±10)% is in 

fact recovered for this molecule, the bond energy of BO would 

be predicted to be (8.85±0.3) eV, which is considerably larger 

than the recent thermochemical value of 8.44±0.12 eV^. 

In Table 4.11, there are listed dipole moments obtained 

from the FORS wavefunctions. In all cases the FORS values are 

improvements over the SCF values. The largest remaining error 

may be the failure to average over the vibrations of the 

atoms. The dipole moment of BO has not been measured so far. 

Its prediction in Table 4.11 is probably accurate to 0.3 

Debye. 

3. FORS lACC calculations 

The FORS lACC method requires the FORS wavefunction to be 

expressed in terms of SAAPs which are constructed from 

projected localized FORS orbitals (PLMOs). For homonuclear 

diatomic molecules, the number of PLMO-generated SAAPs needed 
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Table 4.11. Dipole moments 

Molecule SCF FORS 
(in Debye) 

exp^ 

CN (C"^N") 2.30 1.62 1.45 

BO (B^O") 3.00 2.34 -

CO (C"0+) -0.26 0.30 0.122 

NO (N'O^) -0.31 0.24 0.159 

^ Experimental values from Reference 6. 
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to span the Full Reaction Space is greater than the number of 

SAAPs generated from natural orbitals, because the g/u 

symmetry is not used. The number of composite functions (CFs) 

required to span the Full Reaction Space is in general still 

larger, as was discussed in Section IV.C.2. For the molecules 

investigated here, the specifics are given in Table 4.12. 

Listed are the symmetries and equilibrium distances of various 

states, the symmetries of the separated species, the number of 

PLMO-generated SAAPs and the number of CFs required to span 

the Full Reaction Space. 

FORS lACC calculations on diatomic molecules were 

12 performed using the ALIS system augmented by the program 

84 
TMAT to generate the transformation matrix in Equation 

84 
(4.12) and the program lACC to determine the corrected 

hamiltonian matrix. Both programs are described in detail in 

the preceding section. 

The energies results of the FORS lACC calculations are 

presented in Table 4.13. For the sake of comparison, the 

results from SCF and FORS calculations are also included. As 

discussed in the preceding sections, it is possible to obtain 

approximations to the FORS lACC energies from FORS 

wavefunctions by first order perturbation theory. These 

approximate energies lie in all cases above those obtained by 

diagonalizing the corrected hamiltonian matrix. The 

deviations of the first order energies from the exact ones are 

also listed. 
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The dissociation energies obtained from these 

calculations, together with the experimental values and those 

resulting from SCF and FORS calculations are listed in Têihle 

4.14. With the exception of the ground state of N2 and the 

2 -
B E excited state of CH, the theoretical results improve 

consistently in proceeding from the SCF to the FORS and the 

FORS lACC model. An analysis of the origin of the failures in 

and CH should prove constructive for a better understanding 

of the correlation error and appropriate improvements of the 

model. 

The spectroscopic excitation energies obtained from these 

calculations for the CH and the NH molecules are listed in 

Table 4.15. With the exception of state of CH, the 

agreement with the experiment is very good. 
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Table 4.12. Specifics of various states of some diatomic 
molecules 

State Equilibrium Symmetry of 
Molecule and No. of^ No. of distance Dissociated 

Symmetry SAAPs CFs (bohr) species 

Homonuclear molecules 

«2 3 4 1.4 ^S + ^S 

^2 
328 584 2.068 "^S + ^S 

°2 96 118 2.2817 ^P + ^P 

^2 
16 22 

Hydrides 

2.68 2p ^ 2p 

BH 19 25 2.3289 ^P + ^S 

CH x^n 18 22 2.1163 ^P + ̂ S 

a^Z- 10 11 2.0470 ^P + ^S 

A^A 16 22 2.0823 + ^S 

17 22 2.2080 ^P + 

22 24 2.1057 + ^S 

NH 
3 -

X Z 12 14 2.0 4- ^S 

12 21 2.0 4- ^S 

b^Z* 19 25 2.0 ^P + ̂ S 

OH x^n 10 12 1.8324 ^P + ^S 

FH x^z* 8 10 1.7325 ^P + ^S 

^ SAAPs in terms of Projected Localized FORS MOs (= 
Molecule adapted valence AOs). 
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Table 4.13. Energies obtained from FORS lACC model 

State R = Equilibrium distance 
AE* ecule and Ene rgies < in har tree) AE* 

Symmetry SCF FORS lACC (mh) 

Homonuclear molecules: 

"2 -1.1336 -1.1521 -1.1679 0.25 

xh* -108.9853 -109.1345 -109.6660 6.33 

x^z" g 
-149.6575 -149.7627 -150.4133 1.26 

^2 -198.7640 -198.8443 -199.6673 0.95 

Hydrides ; 

BH X^Z^ -25.1309 -25.1858 -25.3081 0.46 

CH x^n -38.2786 -38.3135 -38.4921 0.76 

a*Z- -38.2892 -38.3073 -38.4580 1.68 

A^A -38.1794 -38.1962 -38.3871 0.59 

B^Z" -38.1574 -36.2050 -36.3904 1. 58 

C2Z+ -38.1272 -38.1615 -38.3488 1.06 

NH x^z~ -54.9756 -55.0025 -55.2501 1.16 

a^A -54.9087 -54.9298 -55.1939 0.92 

b^Z^ -54.8442 -54.8977 -55.1559 1.36 

OH x^n -75.4188 -75.4432 -75.7901 0.95 

FH X^Z^ -100.0666 -100.0909 -100.5490 1.38 

^ ûE = EIFOPC) - E(IACC). FOPC = First order 
perturbation correction, see Equation (4.16). 
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Separated atoms 
Energies <in hartree) 

SCF FORS lACC 

-0.9996 

-108.8008 

-149.6168 

-198.8156 

-0.9996 

-108.8008 

-149.6168 

-198.8156 

-0.9996 

-109.2304 

-150.2286 

-199.6246 

-25.0287 

-38.1881 

-38.1881 

-38.1308 

-38.1881 

-38.1308 

-54.9002 

-54.7953 

-54.7271 

-75.3082 

-98.9076 

-25.0599 

-38.2055 

-38.2055 

-38.1476 

-38.2055 

-38.1476 

-54.9002 

-54.7953 

-54.7620 

-75.3082 

-98.9076 

-25.1589 

-38.3580 

-38.3580 

-38.3121 

-38.3580 

-38.3121 

-55.1150 

-55.0281 

-54.9838 

-75.6141 

-99.3121 
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Table 4.14. Dissociation energies obtained from FORS lACC 
model 

Molecule 

State 
and 

Symmetry b 
exp SCF 

De (eV) 
FORS lACC 

Error^ (eV) 
SCF FORS lACC 

Homonuclear molecules 

4.75 3.64 4.15 4.58 1.11 0.6 0.17 

^2 9.91 5.02 9.08 11.86 4.89 0.83 -1.95 

5.21 1.11 3.97 5.03 4.1 1.24 0.18 

^2 9 
1.66 -1.40 0.78 1.16 3.06 0.88 0.50 

Hydrides 

BH 3.57 2.78 3.43 4.06 0.79 0.14 -0.49 

CH X^ïï 3.63 2.46 2.94 3.65 1.17 0.69 -0.02 

a^Z' 2.91 2.75 2.77 2.72 0.16 0.14 0.19 

A^A 2.03 1.32 1.78 2.04 0.71 0.25 -0.01 

B^Z~ 0.41 -0.84 -0.07 0.88 1.25 0.48 -0.47 

0.96 -0.10 0. 38 1.00 1.06 0.58 -0.04 

NH X^I~ 3.85 2.06 2.78 3.68 1.79 1.07 0.17 

4.67 3.08 3.66 4.51 1.59 1.01 0.16 

b^Z^ 4.80 3.18 3.69 4.68 1.62 1.11 0. 12 

OH x^n 4.62 3.01 3.67 4.79 1.61 0.95 -0.17 

FH x^z+ 6.12 4.33 4.99 6.45 1.79 1.12 -0.33 

^ Error = De(IACC) - De(exp). 

^ Molecular data were obtained from Huber and Herzberg^ 

exceot for D° from Pioer®^ and atomic data from Moore® 
0 



www.manaraa.com

145 

Table 4.15. Excitation energies of diatomic molecules from 
SCF, FORS and FORS lACC calculations 

Transition (eV) SCF FORS FORS lACC exp 

CH X^H a*Z" -0.29 0.18 0.98 0.72 

A^A 2.70 3.20 2.90 2.86 

3.30 3.02 2.81 3.16 

4.12 4.15 3.95 3.93 

NH X^I' a^A 1.83 1.97 1.52 1.57 

-+ 3.58 2.84 2.49 2.63 
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V. AUGMENTATION OF THE FORS MODEL BY 
SELECTED EXCITATIONS FROM THE FULL REACTION SPACE 

A. Introduction 

1. Approaches to electron correlation 

Consistently accurate predictions of chemical and 

physico-chemical properties cannot be had within the self-

consistent-field approximation. To achieve this goal, 

electronic wavefunctions must be improved by taking into 

account interelectronic correlations. However, since the main 

objects of chemical interest are relative changes on energy 

surfaces, the aim of quantum chemical calculations is only the 

recovery of those parts of the correlation energy which chajige 

along reaction paths, rather than the total correlation 

energy. In other words, the changes of energy surfaces with 

variations of molecular geometry have to be determined with 

greater accuracy than the absolute values of the energy. 

The most effective adaptation of wavefunctions to 

describe electron correlations consists of including odd 

powers of all interelectronic distances explicitly. But the 

mathematical difficulties of this approach have so far proven 

insurmountable for systems consisting of more than two 

electrons. The alternative is to expand the wavefunction in 

terms of antisymmetrized products of orbitals. Such methods 

can be classified as follows: 
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(i) Straight configuration interaction ("CI"). Here the 

orbitals are usually taken from a preliminary SCF 

calculation. Two options exist: 

(a) All configurations are included which can be 

constructed from the basis set. 

(b) Only a subset of configurations is selected for 

the configuration interaction calculation. 

(ii) Configuration interaction coupled with orbital 

optimization, i.e. configuration mixing as well as 

orbital shapes are determined by energy minimization 

(MCSCF). Again two options exist: 

(a) All configurations from a chosen set of 

configuration generating orbitals (CGOs) are 

included. The complete active space self-

consistent-field (CASSCF)^^ 29,88 example 

of this approach. In this case, orbital 

optimization can improve the wavefunction only if 

the number of CGOs is smaller than the total 

number of basis functions used to express the 

orbitals. 

(b) Only a subset of configurations is selected for 

the MCSCF calculation, for example in the 

so-called pair theories. 

(iii) Non-variational methods, in particular many-body 

perturbation theories, replacing the solution of the 

CI eigenvalue problem. 
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The number of configurations that can be handled is largest 

for the methods of type (iii) and smallest for the method of 

type (ii), with those of type (i) lying in between. On the 

other hand, the orbital optimization implicit in the methods 

of type (ii) permits a reduction in the number of 

configurations without serious damage to the quality of the 

results. In recent years, a combined approach has been found 

attractive. First an MCSCF calculation is carried out for a 

"reference function" of type (iib) consisting of a limited 

number of configurations. Then a CI calculation is performed 

by adding to the reference function a large number of 

configurations selected according to some principle. 

2. Augmentation of the FORS model 

The FORS method discussed in Chapters II and III is of 

type (iia). Its configuration generating orbitals are chosen 

on the basis of physico-chemical intuition: their number is 

equal to the number of valence orbitals on the participating 

atoms. For this reason, the model is expected to recover the 

non-dynamical correlation of the valence electrons. Its 

19 
application to diatomic molecules usually leads to a 70% to 

90% recovery of the correlation contribution to dissociation, 

depending upon the system. Since the model is of type (iia), 

its limitations arise entirely from restricting the number of 

configurations generating orbitals and the inclusion of 



www.manaraa.com

149 

"augmentincT configurations" involving additional "external 

orbitals" is required in order to recover a greater part of 

the correlation energy in a non-empirical manner. 

When the active space is expanded by including external 

orbitals, it is again necessary to choose between alternatives 

similar to those described by the aforementioned type (i), 

(ii), (iii). As regards to the selection of configurations, 

it is practical to classify the additional configurations, 

according to the number of external orbitals they contain, as 

"single excitations", "double excitations", etc., with respect 

to the Full Reaction Space. No assumptions are required 

regarding the external orbitals, if the additional augmenting 

configurations contain all configurations up to a specific 

excitation type (e.g. all single excitations, or all single 

and double excitations) which can be generated from the entire 

atomic orbital basis. On the other hand, essentially the same 

accuracy can be attained with a considerably smaller number of 

external configuration generating orbitals when they, too, are 

MCSCF optimized. 

The approach taken in the present investigation is as 

follows. The full FORS wavefunction is chosen as zeroth 

approximation. To these a limited number of external 

configuration generating orbitals are added, which are then 

MCSCF optimized. As augmenting configurations we choose all 

configurations up to a certain excitation type that can be 
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generated in a manner to be described from these configuration 

generating orbitals. Since the FORS orbitals are dominant, 

their optimization is affected only negligibly by the 

augmenting configurations all of which have small weights. 

Therefore, the FORS orbitals are optimized only within the 

FORS calculation. They are kept "frozen" (i.e. their shapes 

are left unchanged) during the calculation with the augmented 

wavefunction, when the external orbitals are MCSCF optimized. 

However the mixing coefficients of the various configurations 

in the Full Reaction Space are permitted to readjust during 

the augmented calculation. 

The questions to be explored concern the details of the 

configuration selection. In particular, which FORS 

configurations are chosen to generate excited configurations, 

which FORS orbitals are being replaced by external orbitals 

and which excitation levels are included. 

If the FORS wavefunction is improved by the admixture 

of excitation terms then the weight of these admixtures 

is, to the first order, given by 

<¥q1H!Î^>/C<ÏQ|H|¥Q>-<Ï^!H!Ï^>} . (5.1) 

If single excitations are generated from the FORS wavefunction 

taken as a unit, then the interaction elements 

vanish, according to the generalized Brillouin theorem, and no 
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single excitation improvement is possible. Such improvements 

do obtain, however, if single excitations are made out of 

individual contributing FORS configurations. In such cases, 

it is apparent that the denominator increases with the 

excitation level and greater improvements are therefore 

expected from additional single excitations. 

It is important to note that in selecting those FORS 

configurations out of which excitations are made, one must 

consider not only SAAPs which contribute greatly to the FORS 

wavefunctions, but also those which contribute little or, 

because of symmetry reasons, possibly not at all. 

3. Choices of molecules 

The hydrogen fluoride and fluorine molecules are chosen 

as examples for two reasons. On the one hand, the 

contribution of correlation to their binding energies is 

particularly large and has proven to be difficult to recover. 

On the other hand, they have nevertheless a transparent 

electronic structure. The dissociation involves the cleavage 

of only one bond and the roles of the different orbitals, 

whether they are lone pairs or bonding, are easily 

identifiable. The FORS orbitals can essentially be divided 

into three groups^^^ according to their behavior during the 

dissociation process, as indicated by the following. 
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Orbital Deformation Occupancy 

Inner shell Essentially undeformed Essentially unchanged 

Lone pair Essentially deformed Essentially unchanged 

Bonding Severely deformed Essentially changed 

Since it seems questionable whether correlation in inner 

shell orbitals is important for molecule formation, 

calculations were performed with correlating orbitals to the 

a Q 
inner shell for the FH molecule . It was found that the 

energy lowering at the equilibrium distance and that for the 

separated atoms differed by less than 0.5 millihartree. Since 

we are interested in the dissociation energies rather than in 

the absolute energies, correlating orbitals for inner shells 

are omitted in the sequel. 

B .  The Hydrogen Fluoride Molecule 

1. FORS wavefunction 

The ground state of FH is a state, the equilibrium 

distance is = 1.7325 bohr. All calculations were performed 

using the following quantitative basis; an unsealed (14s,7p,2d 

/ 5s,3p,2d) basis, with polarization exponents of ^^=0.36 and 

1.26 for F atom and an unsealed (6s,2p / 3s,2d) basis with 

C =0.4 and 1.6 for H atom. The SCF and FORS calculations 
P 

yield the following results: 
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E(R_) 
(hartree) (hartree) 

E(R«) AE 
(eV) 

SCF -100.0666 -99.9088 4.30 

FORS -100.0908 -99.9088 4.95 

Since the experimental dissociation energy is 6.12 eV, only 

36% of the correlation energy are recovered by the FORS 

wavefunction in this case. 

spanned by eight SAAPs in terms of which the FORS wavefunction 

is expressed. The first column of Table 5.1 lists these 

SAAPs. The second column lists the corresponding coefficients 

of the FORS wavefunction at the equilibrium distance. In this 

table, Jc denotes the fluorine inner shell orbital, s, x and y 

designate the fluorine lone pair orbitals and a and a* are the 

bonding and antibonding orbitals respectively. All these 

orbitals are molecule-adapted by the MCSCF optimization. The 

spin function is 

The Full Reaction Space for the symmetry of FH is 

0 = [(%g-ea)/r2]5 

and the antisymmetrizer is 

p 
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Table 5.1. FORS wavefunction for FH 

SAAP Coefficient 

*1 
= A £k;^s^x^y^a^©Q3 0. 994740 

*2 
= A Ck^s^x^y^aa'^©Q} -0. 010256 

*3 
= A £k^s^x^y^a*^ÔQ} -0. 086545 

*4 
= A Ck^x^y^a^sCT*©^} -0. 000927 

S 
= A Ck^x^y^a^^saSQ} 0. 045354 

*6 
= A Ck^s^x^a^a*^©^} -0. ,011266 

*7 
= A {k^s^y^o^a*^©^} -0. .011266 

®8 = A {k2x2y2a2a*2Go} -0. .024215 
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where q is the number of doubly occupied orbitals. 

It should be noted that a unitary transformation is 

arbitrary among the orbitals in a Full Reaction Space. Any 

such transformation, while leaving the wavefunction invariant, 

will change the coefficients associated with various SAAPs. 

The coefficients in Tal>le 5.1 result when the FORS MO s are 

determined as natural orbitals of the wavefunction. It is 

remarkable that the natural orbitals k, s, x, and y have the 

aforementioned localized character on fluorine. The extremely 

localized shapes of the natural orbitals s, x, and y are 

illustrated by the contour plot of Figure 5.1. 

2. Aucnnented wavefunctions. First selection method 

a. Calculation at the equilibrium distance Since the 

natural orbitals s, x and y have the character of lone pairs 

on fluorine, it is to be expected that their correlation 

changes only little when the molecule is formed. The two 

A 
electrons in the orbitals a and a , on the other hand, are 

unpaired before bond formation and paired after bond formation 

and, therefore, experience a considerable change in 

correlation energy. In "zeroth order" this pairing process is 

described by the three configurations *3 Table 

5.1. It is seen that configurations 4^^ and 5^ indeed 

dominant. (The small coefficient of $2 is due to the fact 

that the MOs are natural orbitals.) Accordingly, it is 
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Figure 5.1. Natural molecular orbitals of the FORS wavefunctlon of FH 
at R = 1.7325 bohr. Numbers indicate occupancies 



www.manaraa.com

157 

reasonable to consider excitations out of the SAAPs 4^, #2' *3 

and, moreover, to allow more elaborate additional correlation 

in the bond orbitals a, o* than in the lone pair orbitals. 

The following types of excitations are therefore 

considered: single excitations out of s, x, y and single plus 

double excitations out of a and a*. As regard to external 

orbitals, we consider one, two and three external orbitals of 

the various symmetry types. As mentioned before, these 

external orbitals are optimized by the MCSCF procedure in 

terms of the quantitative basis, while the FORS MOs are kept 

unchanged. 

The results of these calculations for the equilibrium 

distance are reported in Table 5.2. The first column of this 

table lists the various excitation choices which were 

investigated. For example, type 3; s-»2a' indicates that 

excitations were made only out of orbital s (as mentioned 

before, only single excitations are considered for s) and that 

two external orbitals a' were made available. Thus all single 

excitations out of s into any one of the two external orbitals 

were constructed for the SAAPs &rid and added to the 

FORS wavefunction as augmenting configurations. On the other 

hand, type 10: A-»la',1IT' indicates excitations were made out 

of a and a* (as mentioned before, single and double 

A 
excitations are considered for a, a ) into one external a' 

orbital and into one pair of external orbitals ir^' and . 
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Table 5.2. Augmented FORS calculations with selected 
excitations for dissociation energy of FH. 
Selection I 

Type No. of 
of additional E at R E at R AE AE-AE 

Excitations SAAPs (hartrei) (hartree) (eV) (eV)° 

1 FORS 0 -100. 0908 -99.9088 4.954 0 

2 s-»la ' 4 -100. 0994 -99.9179 4.939 -0.015 

3 s-»20 ' 8 -100. 1017 -99.9179 5.002 0.048 

4 ii->l7r ' 8 -100. 1265 -99.9095 5.904 0.950 

5 ir-^2Tr' 16 -100. 1274 -99.9095 5.927 0.973 

6 a-»la ' 3 -100. 0943 -99.9088 5.048 0.094 

7 a-*2a' 7 -100. 0943 -99.9088 5.048 0.094 

8 o-^lir ' 2 -100. 0946 -99.9088 5.057 0.103 

9 O-*2TT' 6 -100. 0952 -99.9088 5.072 0.118 

10 a->la' ,lir' 5 -100. .0981 -99.9088 5.152 0.198 

11 or->2a ' ;2W' 13 -100. . 0994 -99.9088 5.187 0.233 

12 s-»2a' 
o-»2a' 

;-n-*2i!' ; 
, 2? ' 37 -100, ,1438 -99.9188 6.123 1.169 

13 s-+3a' 
a-»3o ' 

:ir->2ir' : 
,2-n ' 46 -100 .1439 -99.9188 6.124 1.170 

14 s-*2a' 
a-*2a' 

;-?r->3it ' ; 
,3Tr' 51 -100 .1446 -99.9188 6.145 1.191 

15 s->2a ' 
a-*2a ' 

;ir-+2ir' ; 
,2*',1S 39 -100 .1439 -99.9188 6.124 1.170 

^ Rg = 1.7325 bohrs; = 1000 bohrs. 
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Similarly, type 12 implies that all possible of the following 

excitations were considered: single excitations out of s, x, y 

and single plus double excitations out of o, a* into the sajne 

external orbitals^ namely two a-type orbitals, two ir^-type 

orbitals and two ir^-type orbitals. The fifth column lists the 

predicted dissociation energy. The last column lists the 

improvement over the FORS result. 

Comparison with the experimental dissociation energy of 

6.12 eV shows that any one of the wavefunctions denoted as 

type 12 to 15 recovers the entire correlation contribution to 

the dissociation energy of FH. It is also seen that the 

correlation effects are almost additive. The s, k and a 

improvements of the wavefunctions denoted as type 3, 5, 11 add 

up to a total of 1.256, which is comparable to the value 

listed for type 12. It seems that one correlating a-type 

orbital is needed for s and another one for a and that the 

same holds for the r-type orbitals correlating a and ir. Thus, 

a total of two a' and two ir' external orbitals are adequate. 

The correlations from additional a' - ir' or S orbitals are 

negligible when the external orbitals are optimized. This 

implies that the reported results are equivalent to what would 

be found if all possible excitations of the described types 

were included. In other words, no arbitrary selection has 

been introduced by limiting the number of external orbitals. 

The most remarkable result is that single excitations from the 
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lone pair type FORS n orbitals to external ir orbitals provide 

by far the largest contribution to the correlation part of the 

dissociation energy beyond the FORS model. 

It is possible to express the FORS configurations 

entirely in terms of the localized FORS orbitals. Contour 

plots of these localized orbitals are shown in Figure 5.2. It 

is seen that the orbitals s, x, and y are similar to those in 

Figure 5.1 and that the bonding/antibonding orbital pair is 

replaced by the molecule-adapted orbital z=2p^ on fluorine and 

the molecule-adapted orbital h=ls on hydrogen. The 

corresponding eight SAAPs can be obtained simply by 

substituting the first column in Table 5.1 the orbitals z and 

h for a and a*. (The expansion coefficients in the second 

column will be different of course.) The augmentation of the 

FORS wavefunction can then also be made in terms of these 

localized configurations. If one allows for single plus 

double excitations of the orbitals z and h, the results are 

very close to those discussed for the natural orbitals. 

b. Calculation of dissociation curve Calculations 

with wavefunctions of types 12 of Table 5.2 were performed 

along the entire dissociation path. For comparison, 

calculations were also performed with the corresponding SCF 

and FORS wavefunctions. Total energies are tabulated in 

Table 5.3. These values were interpolated using the program 
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Figure 5.2. Projected localized molecular orbitals for the FORS 
wavefunction of FH at R = 1.7325 bohr. Numbers indicate 
occupancies 
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Table 5.3. Calculated, molecular energies of FH as 
functions of the internuclear distance 

R(bohr) Total Energies (hartree) 
SCF FÔRS Augmented FORS 

1.1 -99.7456 -99.7578 -99.8033 

1.3 -99.9656 -99.9811 -100.0294 

1.4 -100.0184 -100.0356 -100.0851 

1.5 -100.0485 -100.0676 -100.1179 

1.55 -100.0574 -100.0775 -100.1285 

1.6 -100.0631 -100.0843 -100.1358 

1.65 -100.0662 -100.0885 -100.1404 

1.7 -100.0671 -100.0905 -100.1435 

1.72 -100.0669 -100.0908 -100.1439 

1.7325 -100.0666 -100.0908 -100.1441 

1.75 -100.0661 -100.0907 -100.1438 

1. 77 -100.0653 -100.0904 -100.1436 

1.8 -100.0637 -100.0896 -100.1428 

1.9 -100.0555 -100.0839 -100.1373 

2.0 -100.0440 -100.0752 -100.1283 

2. 2 -100.0155 -100.0529 -100.1053 

2.4 -99.9841 -100.0288 -100.0785 

2.6 -99.9527 -100.0056 -100.0523 

2.9 -99.9083 -99.9758 -100.0161 

3.2 -99.8687 -99.9529 -99.9858 

3.5 -99.8341 -99.9367 -99.9632 

4.5 -99.7495 -99.9138 -99.9272 

5.5 -99.6986 -99.9096 -99.9200 

7.0 -99.9088 -99.9190 

1000 -99.9088 -99.9088 -99.9188 
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90 
DIAPOT . The resulting potential curves are shown in 

Figure 5.3 The FORS curve, as well as the augmented FORS 

curve, unlike the SCF curve, treat the dissociation reaction 

FH > F + H 

qualitatively correctly. The program DIAPOT also yields the 

spectroscopic constants, given in Table 5.4, via a Dunham 

90 91-94 
analysis . Previous theoretical results are also 

included for comparison. Only ab initio work which goes 

beyond the Hartree-Fock method, and which is later than 1972, 

is included. A bibliography of the older work may be found in 

references 91 and 95. 

It is seen that the FORS calculations predict the 

spectroscopic constants reasonably well. This implies that 

the FORS model describes the potential curve quite well near 

the equilibrium distance. However, it fails to recover all 

the changes in the correlation energies as the atoms move 

apart. The additional excited configurations seem to achieve 

just that. 

3. Augmented wavefunctions. Second selection method 

In this approach, the procedure for selecting singly 

excited configurations is developed by analogy with the 

situation in the fluorine atom. In the latter, one can 
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Figure 5.3. Potential curves for ground state of FH 
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Table 5.4. Spectroscopic constants of FH 

Method Reference R„ D„ w a e e e e e e e 

(bohr) (eV) (in 1/cm) 

SCF 

FORS 

Augm. FORS 

PNO-CÏ 91 

CEPA 91 

FO-CI 92 

lEPA 93 

OVC 94 

Exp. 6 

1.698 4.307 

1.733 4.954 

1.733 6.130 

1.723 5.69 

1.733 5.83 

1.739 5.88 

1.756 

6 . 1 8  

21.80 4432 

20.94 4136 

20.93 4216 

21.15 4252 

20.95 4169 

20.80 4210 

4084 

76.42 0.802 

99.86 0.832 

86.07 0.757 

85.9 0.762 

90.4 0.787 

1.733 6.12 20.96 4138 89.88 0.798 
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distribute the seven valence electrons in four different ways 

among the four valence orbitals 2s, 2p^, 2py and 2p^, as is 

shown in Table 5.5 in the rows denoted as I, II, III, IV, 

which correspond to SAAPs with symmetries ^P(O), ^P(x), ^P(y), 

respectively. If one wishes to construct additional 

configurations to improve the wavefunction whose principal 

2 component is the P(0) SÀAP, then one can obtain such 

additional SAAPs by making single substitutions in any one of 

the "base configurations" I to IV, if only one chooses 

external orbitals of appropriate symmetries. In Table 5.5, 

appropriate symmetries for these external orbitals are shown 

in lines Ix, IIx, IIIx and IVx below those orbitals which they 

are replacing. These singly excited configurations are indeed 

2 
the most important additions to the base configuration P(0). 

We shall now deduce analogous singly excited 

configurations for the FH molecule. Instead of the one 2p^ 

orbital, we have now the two bond orbitals o and a*. As base 

configurations for excitations, we shall consider all those 

FORS configurations which have at least six electrons in the 

orbitals 2s, 2p^, 2Py. and the rest distributed among a and a*. 

They are listed in Table 5.6 and denoted as la, lb, Ic, Ila, 

lib. Ilia, Illb, IVa, IVb. In the last column, they are 

identified with the SAAPs in Table 5.1 if possiblec It may be 

noted that they include which, after , is the next most 

important contributor in the FORS wavefunction. As in the 
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Table 5.5. Orbital occupations for base configurations and 
single excitations for F atom 

SAAP 
Valence AO s x y z Symmetry 

I occ. no. 2 2 2 1 ^P(O) 

Ix corr. orb. s',d x' y' z' ^P(O) 

II occ. no. 2 2 12 ^P(x) 

IIx corr. orb. dy^ - z' y' ^P(O) 

III occ. no. 2 1 2 2 ^P(y) 

IIIx corr. orb. d z' x' ^P(O) 
xz 

IV occ. no. 1 2 2 2 

IVx corr. orb. z' d^^ s'^d^ ^P(O) 
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Table 5.6. Orbital occupations of base configurations and 
single excitations for I state of FH 

FORS MO s X y CT a* FORS SAAP 

la occ. no. 2 2 2 2 0 

Ib occ. no. 2 2 2 1 1 

le occ. no. 2 2 2 0 2 4^ 

Ix corr. orb. a' x' y' a" cr" 

lia occ. no. 2 2 12 1 

lib occ. no. 2 2 112 

IIx corr. orb. y" S a", y' y 
xy 

Illa occ. no. 2 12 2 1 

Illb occ. no. 2 12 12 

IIIx corr. orb. x" a", x' x' 

IVa occ. no. 1 2 2 2 1 8^ 

IVb occ. no. 1 2 2 1 2 

IVx corr. orb. a" x" y" a' a' 
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case of the fluorine atom, we have some base configurations 

that do not have the right symmetry namely types Ila, 

lib. Ilia and Illb. Again, appropriate symmetries are 

indicated in the rows Ix, IIx, IIIx and IVx for external 

orbitals, so that the correct overall symmetry 

results when they are substituted for the orbitals directly 

above them, to form single excitations from the corresponding 

base configurations. The three correlating a orbitals 

correspond to the s', d^ and z' orbitals in the atom, the two 

degenerate TT orbitals to the x ' , y ' and d^^, d^^ respectively, 

and the S orbital to the remaining d orbitals in the atom. 

Calculations were performed in which some or all of these 

single excited SAAPs are added to all FORS configurations and 

the results are listed in Table 5.7. It is apparent that the 

results of this approach are comparable to those obtained by 

the first selection procedure, if only single excitations are 

taken into account. This is so because the contribution from 

case 11 in Table 5.2 can be practically identified with that 

of all doubly excited configurations: on the one hand, only 

the bond orbitals a, cr'* are subject to double replacements 

and, on the other hand, the contribution of the single 

substitutions is very much smaller than that of the double 

substitutions in case 11. Subtracting the value 0.233 of case 

11 from the value 1.169 of case 12, one obtains 0.935, which 

differs only by 0.13 eV from the final value of Table 5.7. 
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Table 5.7. Augmented FORS calculations with selected 
excitations for dissociation energy of FH. 
Selection II 

Excitations No. of 
from additional 

SAAPs 
E at R ^ 

(hartrei) 
E at R^* 
(hartree) 

AE 
(eV) 

AE-AE 
(eV)° 

FORS 0 -100.0908 -99.9088 4. 954 0 

Is 12 -100.1017 -99.9179 5.001 0.047 

ITT 16 -100.1274 -99.9095 5.927 0.973 

la 6 -100.0909 -99.9099 4.955 0.001 

II + Ills 16 -100.0957 -99.9208 4.760 -0.194 

II + IIlTT 20 -100.0957 -99.9091 4.987 0.033 

II + Ilia 

M
 

II 

IVs 6 -100.0913 -99.9097 4.941 -0.013 

IVTT (=II+IIIs) 

IVa ( =Is) 

all of above 76 -100.1424 -99.9309 5.755 0.801 

= 1.7325 bohrs; R^ = 1000 bohrs. 
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C. The Fluorine Molecule 

1. FORS wavefunction 

The ground state of F^ is a state with an 

equilibrium distance of R^ = 2.68 bohr. All calculations were 

performed with an unsealed (14s,7p,2d / 4s,3p,2d) basis of 

even-tempered primitives with polarization exponents of 

= 0.36 and 1.26. The calculations were simplified by adapting 

the atomic orbitals to g and u symmetry. The SCF and FORS 

calculations yield the following results: 

E(R ) 
(hartfee) 

E(R.) 
(hartree) 

Ù E  
(eV) 

SCF -198.7641 -198.8156 -1.40 

FORS -198.8443 -198.8156 0-78 

The experimental binding energy is 1.65 eV. Although the FORS 

calculation is still 0.9 eV short of the experimental value, 

it does in fact recover 71% of the correlation contribution to 

the binding energy. 

If the natural molecular orbitals, which are symmetry-

adapted, are used to construct configurations, then the Full 

Reaction Space for the symmetry is spanned by the ten 

SAAPs listed in the first column of Table 5.8. The second 

column contains the expansion coefficients of the FORS 

wavefunction for the ground state at the equilibrium distance. 
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Table 5.8. FORS wavefunction for F2 

SAAP Coefficient 

«1 - A CkV2a22cVx^Jy|3o^0^} 0.964860 

*2 ' A. -0.251894 

*3 - ̂  -0.019690 

= A £k^k^2aVx^^y^3a^2a 3a G^} 0.048444 
4  g u  u  u  g u ^ g  u  g  g  0  

4 = A {k^k^2a^2a^x^x2y^3a^3a^0 } -0.028997 
5 g u g u u g^u g u 0 

4 = A {!k^k^2a^2a^x^y^y^3a^3a^0^} -0.007673 
6 g u g u uru^g g u 0 

= A £k^k^2a^2a^x^x^^3a^3a^0-} -0.028997 
7 g u g u u g-^g g u 0 

$o = A £k^k^2a^2a^xyy^3a^3a^©.} -0.007673 
a  g  u  g  u  g u g  g  u  0  

»9 ' •'• -0.025670 

*10 = •'• -0.020033 
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Although the configuration generating orbitals used in 

Table 5.8 extend over both atoms, it is still possible to 

distinguish between inner shell, lone pair and bonding 

orbitals. The MO s Jc^, are the g and u linear combinations 

of the inner shell orbitals and the MOs 20g, x^, x^, y^, 

are the g and u linear combinations of the lone pair 2s, 

2p^, 2py, orbitals on the two atoms. This is apparent from the 

expansion coefficients in Table 5.8, and is confirmed by an 

14 
examination of the orbitals . The orbitals 3a and 3a 

g u 

correspond to the bonding and antibonding orbitals a and a of 

FH. It is therefore apparent that the configurations of Table 

5.8 could also be expressed in terms of the left and right 

lone pair orbitals 

= (fg + Pu'/J 2 

=R = (=g - =u^/^ 

= <^g - =u)/f2 

YR = (Yg - Yu'/f? 

Because of the loss of the g/u symmetry; sixteen SAAPs-

generated frosi these orbitals are needed to span the Full 

Reaction Space. 

2. Augmented wavefunctions. First selection method 

This approach is analogous to the one outlined in Section 

V.B.2a for FH. The difference is that, in F^, we have twice 
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as many lone pair orbitals as in FH. As in FH, we consider 

only single excitations out of the six lone pair MOs 2a^, 2ct^, 

Xg, x^, y^, y^, but include single and double excitations out 

of the bonding MOs and In contrast to FH, the basic 

pairing process during bond formation in F2 is described by 

two SAAPs only, namely and which correspond to and 4^ 

in FH. The SAAP corresponding to FH has u symmetry; it 

may be noticed that, even in FH, it has a small coefficient. 

Thus, by analogy to F,, we consider here only excitations of 

the aforementioned kinds from the configurations and " 

Since there are more lone pair orbitals to be correlated, it 

can be expected that more external orbitals will be required 

before saturation occurs. 

As in the case of FH, calculations were performed using 

certain subgroups of configurations as well as all 

configurations. The results at the equilibrium distance are 

listed in Table 5.3. They are identified by a notation 

similar to that used in Table 5.2. The conclusions which 

emerge from these results on F^ are in close agreement with 

those found for FH. Again, the contributions from various 

types of excitations are nearly additive. 

In particular one observes, as in FH, that single 

excitations from lone pair type FORS ir orbitals to external ir 

orbitals provide by far the largest contributions to the 

correlation part of the dissociation energy, beyond the FORS 
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Table 5.9. Augmented FORS calculations with selected 
excitations for dissociation energy of F_. 
Selection I 

a a 
additional E at R E at R AE AE-AE 

Case Excitations SAAPs (hartreef (hartree) (eV) (eV)° 

1 FORS 0 -198. 8443 -198. 8178 0. 720 0 

2 s->lag' 'l*u' 8 -198. 8589 -198. 8359 0. 625 -0. 095 

3 s-^2ag' 'l^u' 12 -198. 8646 -198. 8359 0. 782 0. 061 

4 s-*2a ' 
g '2*u' 

16 -198. 8667 -198. 8359 0. 838 0. 117 

5 ir-»lii ' 
u 'i"g' 

16 -198. 8859 -198. 8193 1. 814 1. 093 

6 ir-»2'ff ' 
u 

24 -198. 8864 -198. 8193 1. 825 1. 104 

7 '2*g' 32 -198. 8868 -198. 8194 1. 834 1. 114 

8 cr-^lOg' 'l*u' 4 -198. 8453 -198. 8179 0 746 0. 025 

9 7 -198. 8464 -198. 8179 0. 777 0. 057 

10 a^2ag' '20u' 10 -198. 8453 -198. 8179 0 .747 0 027 

a->l-
u --g' 

-198 .3444 -198 » 2172 0 721 Q .001 

12 o^^"u 'i^g' 8 -198 .8460 -198 .8178 0 .766 0 .046 

13 '2%g' 12 -198 .8460 -198 .8178 0 .767 0 .047 

14 a-»la 
g 'lOu' 

8 -198 . 8469 -198 .8179 0 .791 0 .070 

15 o-*2a^ -l°u'' 15 -198 .8482 -198 .8179 0 .8251 0 .105 

'%e 
= 1.7325 ijohr ; ^00 = 1000 bohr. 
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Table 5.9. continued 

No. of 
additional E at R E at 

Case Excitations SAAPs (hartree; (hartree) 
AE AE-AE 

(eV) (eV) 

16 a^2a^',2o^', 

2*u''2*g' 

22 -198.8485 -198.8179 0.833 0.113 

17 s-»2a^' ,lo^'; 

a^2a^' ,lor^' , 

51 -198.9082 -198.8375 1.923 1.203 

18 s^^Og',2a^'; 

7r-^2ir^' ; 

cr-2ag' ,2o^' , 

2*u''2'g' 

70 -198.9103 -198.8377 1.977 1.257 
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model. The most likely explanation of this remarkable fact 

seems to be that the ir orbital s in the neutral FORS 

configurations (FH, FF) would like to have somewhat different 

shape than those in the ionic FORS configurations {F~H^, 

FF), and that the addition of singly excited configurations 

approximates this modification to first order. 

Unfortunately, in F^ the inclusion of all additional 

configurations leads to a dissociation energy which overshoots 

the experimental value. The included configurations are 

therefore more effective for the molecule F^ than for the F 

atom. 

3. Augmented wavefunctions. Second selection method 

a. Calculation at the equilibrium distance This 

approach corresponds to the second selection procedure 

described for FH. In analogy to Section V.B.3, we consider 

here as base configurations for single excitations all those 

SAAPs in which the orbitals 2a^, Zo^y x^. x^,- y^, y^, and 

are at least occupied by fifteen electrons. There are 

fifteen SAAPs of this kind, namely , #2' *4' *5 Table 5.8 

and the SAAPs to listed in Table 5.10 which do not 

have symmetry. Table 5.11 for F„ corresponds to Table 
g z 

5.6 for FH. It lists the fifteen base configurations and 

relates their types to those of Tables 5.5 and 5.5. Below 

each base configuration are given the appropriate symmetries 

for external orbitals which will yield singly excited SAAPs of 
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Tcible 5.10. Some FORS configurations which have 
vanishing coefficients in the ground 
state of Fo 

SAAP 

*11 = * 

*12 = » 

*13 = » 

«14 = * 

*15 ' ̂ Ck|ku2°|2°u%uyufg3*u%g3°g°o} 

*16 = (kgku2°g2°u*u=gyg3*|?u3°uGo] 

*17 ' (k|ku2°|2°u*u:g?g3*uyu3°gGo) 

*18 ' (kgk^>°^P°u:|y5yg3eg%u3°uGo) 

*19 = A (k2k2pa22a2=2y^y23.Z:u3?gGo] 

«20 = -'- (k^>^2,2x2x2y2y23c22cu3a,0o) 

*21 - ̂  (k|k^>°u=u=§y5?|3*g''g3'u°o) 
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Orbital occupations for base configurations and 

single excitations for ^2^ of molecule 
y z 

Occ. No. / Type of Corr. Orb. 

I'ux I'uy 

2 2 2 2 2 2 2 0  

a b c d e f a 

2 2 2 2 2 2 0 2  

a b c d e f b 

2 2 2 2 2 2 1 1  

b a e f c d 

2 2 2 2 2 1 2 1  

d  f  g  a , h i  b , j d  f  

2 2 2 2 2 1  1 2  

f  d  i  b , j g  a , h f  d  

2  2 2 2 1 2  2 1  

c e a,h g b,j c e 

2 2 2 2 1 2  1 2  

e c b,]i a.rh e c 

2 2 2 1 2 2 2 1  

f d i b, j f d 

2 2 2 1 2 2 1 2  

d f cr a,h d f 
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Table 5.11. continued 

Type SAAP 2a 2a^ lTr„^^ 
Occ. No. / Type of Corr. Orb. 

lir.... lir lir 3cr_ 3a. 

IIIu 18 22122221 

e c b,j e c 

1 9  2 2 1 2 2 2 1 2  

c e a,h c e 

I V  4 2 1 2 2 2 2 2 1  

a b c d e f a b  

5 1 2 2 2 2 2 1 2  

a b c d e f a b  

2 0  2  1 2 2 2 2 1 2  

a e f c d b a 

2 1  1 2 2 2 2 2 2 1  

b e f c d b a 

Note: The blank spaces in the table indicate that excitation 
from that orbital will result in configurations already 
generated from other SAAPs in the same group. External 
orbitals are abbreviated as follows: 

a = a ' ; b = a.,' ; 
y u 

= ' 'xu' = " ' "yu' •• ® ' V : ̂ = V' ' 

g = 5 (xy) ; h = S (x^-y^) ; i = S^fxy) ; j = S^(x^-y^) 



www.manaraa.com

181 

symmetry by single replacement of the corresponding base 

orbitals. 

Again calculations are performed in which some or all of 

these singly excited SAAPs are added to all FORS 

configurations. The results are listed in Teible 5.12. As in 

the previous cases, the effect of the different types of 

contributions are seen to be approximately additive. As was 

the case in FH, the overall result (1.13 eV) obtained by this 

approach, which considers single excitations only, agrees with 

the effect of all single excitations in the first approach 

(case 18 minus case 16 of Table 5.9: 1.257-0.113=1.144 eV). 

b. Calculation of dissociation curve Calculations of 

type 8 of Table 5.12 are performed along the entire 

dissociation curve. The results of these calculations as well 

as those of SCF and FORS calculations are listed in Tahle 

5.13. With the help of the DIAPOT program^^ these energies 

are interpolated and spectroscopic constants extracted via a 

Q 1 
Dunham analysis . The dissociation curves are plotted in 

Figure 5.4. The spectroscopic constants are listed in Table 

5.14 together with previous theoretical results^^ . 

The SCF wavefunction fails to predict binding and the 

minimum geometry obtained by fitting the curve is 0.15 bohr 

too short. The minimum on the FORS potential curve is 0.10 

bohr too long and the dissociation energy calculated is too 
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Table 5.12. Augmented FORS calculations with selected 
excitations for dissociation energy of F_. 
Selection II 

Type No. of 
of additional E at R 

excitations SAAPs (hartrei) 
E at R 

(hartreê) 
AE 

(eV) 
AE-AE 
(eV)( 

1 FORS 0 

2 Is 16 

3 iTT 32 

4 la 4 

5 l i s  64 

5 Ilir 64 

IIa( =Iir ) 

7 Ills 16 

IIIir(=IIs) 

IIIa(=Is) 

R all nf ahnup 1QA 

-198.8443 

-198.6667 

-198.8869 

-198.8443 

-198.8674 

-198.8455 

-198.8459 

•198.8178 

-198.3377 

-198.8194 

-198.8179 

-198.8417 

-198.8184 

0.720 

0.790 

1.837 

0.720 

0.700 

0.737 

•198.8194 0.721 

0 

0.070 

1.117 

0 

-0.020 

0.017 

0 . 0 0 1  

-195.9294 -198.8614 1.850 1.130 

^ Rg = 1.7325 bohr; = 1000 bohr. 
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Table 5.13. Calculated energies for 

Total Energies (hartree) 
R(bohi ) SCF FORS Augmented FORS 

1.4 -197.1045 -197.1152 -197.1684 

1.7 -198.2264 -198.2457 -198.3121 

2.0 -198.6266 -198.6580 -198.7384 

2.2 -198.7273 -198.7699 -198.8560 

2.4 -198.7649 -198.8214 -198.9092 

2.b -198.7697 -198.8341 -198.9217 

2.6 -198.7683 -198.8414 -198.9276 

2.6 5 -198.7659 -198.8435 -198.9291 

2.68 -198.7640 -198.8443 -198.9294 

2.7 -198.7626 -198.8448 -198.9295 

2.72 -198.7610 - 198.8451 -198.9290 

2.75 -198.7584 -198.8454 -198.9286 

2.8 -198.7536 -198.8455 -198.9275 

2.85 -198.7483 -198.8452 -198.9258 

2.9 -198.7425 -198.8446 -198.9242 

3.1 - 198.7166 -198.8401 -198.9134 

3.3 -198.6889 -198.8346 -198.9014 

4.0 -198.6010 -198.8217 -198.8719 

5.0 -198.5199 -198.8178 -198.8624 

7.0 -198.4517 -198.8177 -198.8610 

10.0 -198.4215 -193.8178 -198.8617 

1000 -198.8156 -198.8178 -198.8614 
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Table 5.14. Spectroscopic constants of 

Method Reference 
*e De Be "e^e % 

(bohr) (eV) (in l/cm) 

S CP 2.528 0.9917 1248.8 6.69 0.0083 

FORS 2.789 0.753 0.8149 702.0 15.80 0.0182 

Aug®. FORS 2.694 1.854 0.8734 943.2 10.87 0.0116 

OVC 96 2.67 1.67 0.88 942 0.0160 

lEPA 97 2.781 795 16 

CEEA 97 2.666 945 14 

PNO-CI 97 2.606 1150 10 

Exp. 6 2.68 1.658 0.8902 916.6 11.24 0.0138 
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small by 0.9 eV. Augmentation of the FORS wavefunction 

greatly improves the results: the predicted equilibrium 

distance is within 0.01 bohr of the experimental value and the 

dissociation energy is within 0.2 eV of the experimental 

result. The good prediction of the spectroscopic constants 

indicates that the wavefunction describes the energy curve 

adequately near the equilibrium. The overestimation of the 

dissociation energy for the augmented FORS curve implies that 

the wavefunction recovers more correlation near the 

equilibrium distance than for the dissociated atoms. Fine 

tuning of the selection scheme is required to overcome this 

shortcoming. 

D. Conclusion 

The ab initio augmentation of the FORS model discussed in 

this section substantially improves its performance in 

predicting dissociation energies. It can therefore be 

concluded that single excitations of lone pair type orbitals 

and single plus double excitations of bonding orbitals 

generate those configurations which, together with the Full 

Reaction Space, closely describe that part of the electron 

correlation which changes upon dissociation. It can also be 

concluded that MCSCF optimization of a few external orbitals 

is an adequate substitute for the inclusion of all possible 

configurations of the corresponding type. As a consequence 
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the number of augmenting configurations containing external 

orbitals is kept quite low. It is somewhat disappointing 

that in there is still left an error of about 0.1 to 0.2 

eV, i.e. up to 5 kcal/mole, in the binding energies. 



www.manaraa.com

188 

VI. LITERATURE CITED 

1. L. C. Allen and A. M. Karo, Rev. Mod. Phys. 32, 275 
(1960). 

2. H. F. Schaefer III, Methods of Electronic structure 
Theory (Plenum Press, New York, 1977). 

3. P. Carsky and M. Urban, Ab Initio Calculations, Methods 
and Applications in Chemistry, edited by G. Berthier, 
M. J. S. Dewar, H. Fischer, K. Furui, H. Hartmann, H. 
H. Jaffe, J. Jorther, W. Kutzelnigg, K. Ruedenberg, E. 
Scrocco and W. Zeil (Springer-Verlag, Berlin, 1980). 

4. S. Fraga, J. Karwowski and K. M. S. Saxena, Handbook of 
Atomic Data (Elsevier, Amsterdam, 1976). 

5- A. Veillard and E. Clementi, J. Chem. Phys. 49, 2415 
(1968). 

6. K. P. Huber and G. Herzberg, Constants of Diatomic 
Molecules (Van Nostrand Reinhold, New York, 1979). 

7. R. C. Raffenetti, J. Chem. Phys. 59, 5936 (1973). 

8. R. C. Raffenetti, Int. J. Quantum Ciiem. Symp. 9, 289 
(1974). 

9. R. D. Bardo and K. Ruedenberg, J. Chem. Phys. 60, 918 
(1974). 

10. D. F. Feller and K. Ruedenberg, Theor. Chim. Acta 
(Berl.) 52, 231 (1979). 

11. M. H. Schmidt and K. Ruedenberg, J. Chem. Phys. 71, 
3962 (1979). 

12. The ALIS program system (Ames Laboratory, Iowa State 
University) was developed by the Quantum Chemistry 
Group at ISU and released in May, 1979. The ALIS 
system also contains a version of the BI(3GM0LI integral 
program. 

13. a) K. Ruedenberg and K. R. Sundberg, in Quantum 
Science, edited by J. L. Calais, 0. Goscinski, J. 
Linderberg and Y. Ohrn (Plenum Press, New York, 1976), 
p. 505; b) L. M. Cheung, K. R. Sundberg and K. 
Ruedenberg, Int. J. Quantum Chem. 16, 1103 (1979). 



www.manaraa.com

189 

14. a) K. Ruedenberg, M. W. Schmidt, M. M. Gilbert and S. 
T. Elbert, Chem. Phys. 71, 41 (1982); b) K. 
Ruedenberg, M. W. Schmidt and M. M. Gilbert, Chem. 
Phys. 71, 51 (1982); c) K. Ruedenberg, M. W. Schmidt, 
M. M. Gilbert and S. T. Elbert, Chem. Phys. 71, 65 
(1982). 

15. M. G- Dombek, Ph.D. Dissertation, Iowa State University 
( 1977) . 

16. D. F. Feller, Ph.D. Dissertation, Iowa State University 
(1979). 

17. R. P. Johnson and M. W. Schmidt, J. Am. Chem. Soc. 103, 
3244 (1981). 

18. D. F. Feller, M. W. Schmidt and K. Ruedenberg, J. Am. 
Chem. Soc. 104, 960 (1982). 

19. M. W. Schmidt, Ph.D. Dissertation, Iowa State 
University (1982). 

20. B. Lam and R. P. Johnson, J. Am. Chem. Soc. 105, 7479 
(1983). 

21. A. C. Wahl and G. Das, in Methods of Electronic 
Structure Theory, edited by H. F. Schaefer III (Plenum 
Press, New York, 1977), and references therein. 

22. G. C. Lie and E. Clementi, J. Chem. Phys. 50, 1275 and 
1288 (1974). 

2 3 .  D .  M. Silver, E. L. Mehler cund K. Ruedenberg, J. (Zhem. 
Phys. 5 2 ,  1 1 7 4 ,  1 1 8 1  and 1 2 0 6  ( 1 9 7 0 ) .  

24. T. H. Dunning. D. C. Cartwright, W. J. Hunt, P. J. Hay 
and F. W. Bobrowicz, J. Chem. Phys. 64, 4755 (1976). 

25. K. Kirby-Docken and B. Liu, J. Chem. Phys. 66, 4309 
(1977) 

25. P. E. H. Siegbahn, A. Heiberg, B. 0. Roos and B. Levy, 
Physica Scripta 21, 323 (1980). 

27. B. 0. Roos, P. R. Taylor and P. E. M. Siegbahn, Chem. 
Phys. 48, 157 (1980). 



www.manaraa.com

190 

28. B. 0. Roos, Int. J. Quantum Chern. 14, 175 (1980). 

29. P. E. M. Siegbahn, J. Almlof, A. Heiberg and B. 0. 
Roos, J. Chem. Phys. 74 (1981). 

30. K. Ruedenberg, L. M. Cheung and S. T. Elbert, Int. J. 
Quantum Chem. 16, 1069 (1979). 

31. K. Ruedenberg, Phys. Rev. Lett. 27, 1105 (1971). 

32. W. I. Salmon and K. Ruedenberg, J. Chem. Phys. 57, 2776 
(1972). 

33. W. I. Salmon, K. Ruedenberg and L. M. Cheung, J. (Them. 
Phys. 57, 2787 (1972). 

34. A. C. Hurley, Introduction to the Electron Theory of 
Small Molecules (Academic Press, London, 1976), pp 
186-189. 

35. H. E. Zimmerman, J. Am. Chem. Soc. 88, 1566 (1966). 

36. W. Th. A. M. van der Lugt and L. J. Oosterhoff, J, Am. 
Chem. Soc. 91, 6042 (1969). 

37. J. Michl, Mol. Photochem. 4, 243 (1972). 

38. L. Salem, J. Am. Chem. Soc. 96, 3486 (1974) 

39. J. Michl, Top Curr. Chem. 46, 1 (1974). 

40. H. E. Zimmerman, Acc. Chem. Res. 10, 312 (1982). 

41. L. Salem, Acc. Chem. Res. 12, 87 (1979). 

42. R. J. Buenker. V. Bonacic-Koutecky and L. Pogliani, J. 
Chem. Phys. 73, 1835 (1980). 

43. a) G. Orlandi, P. Palmieri and G. Pogga, J. Chem. Soc. 
Faraday Trans. 2 77, 71 (1981); b) J. Tennyson and J. 
N. Murrell, Nouv. J. Chim. 5, 361 (1981); c) M. 
Persico, J. Am. Chem. Soc. 102, 7839 (1980); d) I. 
Baraldi, M. C. Bruni, F. Momicchioli and G. Ponterini, 
Chem. Phys. 52, 415 (1980); e) G. Orlandi and G. 
Marconi, Nuovo Cimento Soc. Ital. Fis. B. 63B, 332 
(1981); f) J. P. Malrieu, Theoret. (Thim. Acta 59, 251 
(1981); g) I. Nebot-Gil and J. P. Malrieu, J. Am. 
Chem. Soc. 104, 3320 (1982); h) V. Bonacic-Koutecky 



www.manaraa.com

191 

and M. Persico, D. Dohnert and A. Sevin, J. Am. Chem. 
Soc. 104, 6900 (1982). 

44. a) T. Tezuka, 0. Kikuchi, K. N. Houk, M. N. Paddon-Row, 
C. M. Santiago, N. G. Rondon, J. C. Williams Jr. and R. 
Wells-Gandour, J. Am. Chem. Soc. 103, 1367 (1981); b) 
V. Bonacic-Koutecky, J. Am. Chem. Soc. 100, 395 (1978); 
c) W. G. Dauben and J. S. Ritscher, J. Am. Chem. Soc. 
92, 2925 (1970); d) W. G. Dauben, M. S. Kellog. J. I. 
Seeman, N. D. Wietmeyer and P. H. Wenschuh, Pure Appl. 
Chem. 33, 197 (1973); e) 0. Kikuchi, H. Kubota and K. 
Suzuki, Bull. Chem. Soc. Jpn. 54, 1126 (1981); f) G. 
Trinquier, N. Paillous, A. Lattes and J. P. Malrieu, 
Nouv. J. Chim. 1, 403 (1977); g) C. M. Meerman van 
Bentham, H. J. C. Jacobs and J. J. C. Mulder, Nouv. J. 
Chim. 2, 123 (1978); h) B. H. Baretz, A. K. Singh and 
R. S. H. Liu, Nouv. J. Chim. 5, 297 (1981); i) S. S. 
Hixson, R. 0. Day, L. A. Franke and V. J. Ramachandra 
Rao, J. Am. Chem. Soc. 102, 412 (1980); j) P. J. Kropp 
and F. P. Tise, J. Am. Chem. Soc. 103, 7293 (1981). 

45. M. T. Borden, J. Chem. Phys. 45, 2512 (1966). 

46. a) C. S. Drucker, V. G. Toscano and R. G. Weiss, J. Am. 
Chem. Soc. 95, 6482 (1973); b) 0. Rodriguez and H. 
Morrison, CThem. Commun. 13, 579 (1971). 

47. T. J. Stierman and R. P. Johnson, J. Am. Chem. Soc. 
105, 2492 (1983). 

48. C. E. Dykstra and H. F. Schaefer III, in The Chemistry 
of Ketenes, Aliénés and Related Compounds, Part I, 
edited by 3. Patai (John Wiley and Sons, New York, 
1980), pp 1-44. 

49. a) R. J. Buenker, J. Chem. Phys. 48, 1368 (1968); b) 
L. J. Schaad, L. A. Burnelle and K. P. Dressier, Theor. 
Chim. Acta 15, 91 (1969); c) L. J. Schaad, Tetrahedron 
26, 4115 (1970); d) L. Radom and J. A. Pople, J. Am. 
Chem. Soc. 92, 4785 (1970); e) C. E. Dykstra, J. Am. 
Chem. Soc. 99, 2050 (1977); I) V. Staemmler, Theor. 
Chim. Acta 45, 89 (1977); g) R. Seeger, R. Krishnan, 
J. A. Pople and P. V. R. Schleyer, J. Am. Chem. Soc. 
99, 7103 (1977); h) K. Krohg-Jespersen, J. Comput. 
Chem. 3, 571 (1982); i) R. C. Bingham, M. J. Dewar and 
D. H. Lo, J. Comput. Chem. 97, 1294 (1975). 



www.manaraa.com

192 

50. M R. Roth, G. Ruf and P. W. Ford, Chem. Ber. 107, 48 
<1974). 

51. B. R. Brooks and H. F. Schaefer, J. Chem. Phys 70, 5092 
(1979). 

52. a) J. A. Pincock and R. J. Boyd, Can. J. (Zhem. 55, 2482 
(1977); b) À. Sevin and L. Arnaud-Danon, J. Org. Chem. 
46, 2346 (1981); c) J. H. Davis, W. A. Goddard III and 
R. G. Bergman, J. Am. Chem. Soc. 99, 2427 (1977). 

53. a) D. J. Pasto, M. Haley and D. Chipman, J. Am. (Them. 
Soc. 100, 5272 (1978); b) P. H. Dillon and G. R. 
Underwood, J. Am. Chem. Soc. 99, 2435 (1977). 

54. a) P. W. Dillon and G. R. Underwood J. Am. (Zhem. Soc. 
96, 779 (1974); b) A. Greenberg and J. F. Liebman, 
Strained Organic Molecules (Academic Press, New York, 
1979). 

55. M. W. Schmidt, R. 0. Angus Jr. and R. P. Johnson, J. 
Am. Chem. Soc. 104, 6838 (1982). 

56. M. Balci and W. M. Jones, J. Am. Chem. Soc. 102, 7607 
(1980). 

57. W. Moffitt, Proc. Roy. Soc. A 210, 224 (1951). 

58. W. Moffitt, Proc. Roy. Soc. A 210, 245 (1951). 

59. W. Moffitt. Rept. Prog. Phys, 17, 173 (1954). 

60. A. C. Hurley, Proc. Phys. Soc. A 68, 149 (1955). 

61. A. C. Hurley, Proc. Phys. Soc. A 69, 49 (1956). 

62. A. C. Hurley, Proc. Phys. Soc. A 69, 301 (1956). 

63. A. C. Hurley, Proc. Phys. Soc. A 69, 767 (1956). 

64. A. C. Hurley, Proc. Roy. Soc. A 248, 119 (1958). 

65. A. C. Hurley, Proc. Roy. Soc. A 243, 402 (1958). 

66. A. C. Hurley, J. Chem. Phys. 28, 532 (1958). 

67. A. C. Hurley, Rev. Mod. Phys. 35, 448 (1963). 



www.manaraa.com

193 

68. R. G. Parr, The Quantum Theory of Molecular Electronic 
Structure (W. A. Benjamin, New York, 1963), pp 101-108. 

69. G. G Balint-Kurti and M. Karplus, in Orbital Theories 
of Molecules and Solids, edited by N. H. Marsh 
(Clarendon Press, Oxford, 1974), Chapter 6. 

70. Error = HF energy - Elxact energy? Exact energies from 
a) C. L. Pekeris, Phys. Re^. 112, 1649 (1958); HF 
energies for H , He and Li from b) C. Froese-Fischer, 
The Hartree-Fock Method for AToms, A Numerical Approach 
(JQ^ Wiley and Sons, New York, 1977); HF energy for 
Ne from c) E. Clementi and C. Roetti, Atomic Data and 
Nuclear Data Tables 14, 177 (1974). 

71. K. J. Miller and K. Ruedenberg, J. Chem. Phys. 48, 3414 
(1968). 

72. E. V. Ludena and M. Gregori, J. (Them. Phys. 71, 2235 
(1979). 

73. G. Verhaegen and C. M. Moser, J. Phys. B 3, 478 (1970). 

74. T. Arai, Rev. Mod. Phys. 32, 370 (1960). 

75. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955). 

76. G. G. Balint-Kurti and M. Karplus, J. (Them. Phys. 50, 
478 (1969). 

77. D. Grevy and G. Verhaegen. Int. J, Quantum Chem, 12-
115 (1977). 

78. J. Lieven, J. Breulet and G. Verhaegen, Theoret. Chim. 
Acta (Berlin) 60, 339 (1981). 

79. J. P. Desclaux, C. M. Moser and G. Verhaegen, J= Phys. 
B 4, 296 (1971). 

80. E. Clementi, IBM J. Res. Dev. 9, 1 (1965). 

81. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 
4, 539 (1975). 

82. H. F. Schaeffer III, R. A. Klemm and F. E. Harris, J. 
Chens. Phys. 51, 4643 (1969). 



www.manaraa.com

194 

83. B. Lam, M. H. Schmidt, K. Ruederiberg, Atomic State 
Functions for the Valence Configurations snpm in terms 
of Spin Adapted Products of Real Atomic Orbitals, Iowa 

State University, 1984, to be published. 

84. The SKUNK program system was developed by members of 
the Quantum Chemistry Group at Iowa State University. 
It contains various utility programs. 

85. B. Lam, M. H. Schmidt, K. Ruedenberg, Intra-Atomic 
Correlation Correction in the FORS model, Iowa State 
University, 1984, to be published. 

86. L. G. Piper, J. Chem. Phys. 70, 3417 (1979). 

87. C. E. Moore, National Bureau of Standards Monograph, 
467 (1949). 

88. P. E. M. Siegbahn, J. Chem. Phys. 70, 5391 (1979). 

89. B. Lam, Iowa State University, 1982, unpublished. 

90. P. Valtazanos, DIAPOT program, Iowa State University, 
1980, unpublished. 

91. W. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356 (1975). 

92. V. Bondybey, P. K. Pearson and H. F. Schaefer III, J. 
Chem. Phys. 57, 1123 (1972). 

S3. K. Lischka, Thscr. Chim. Acta (Berl.) 31, 39 (1973)= 

94. W. J. Stevens, J. Chem. Phys. 58, 1264 (1973). 

95. P. E. Cade, An Annotated Bibliography of Quantum 
Mechanical Calculations on the First Row Diatomics 
Hydrides, Technical Report (Laboratory of Molecular 
Structure and Spectra, University of (Chicago, 1966). 

96. G. Das and A. C. Wahl, J. Chem. Phys. 56, 3532 (1972). 

97. R. Ahlrichs, H. Lischka, B. Zurawski and W. Kutzelnigg, 
J. Chem. Phys. 63, 4685 (1975). 



www.manaraa.com

195 

VII. ACKNOWLEDGEMENTS 

First of all, I would like to thank my thesis advisor. 

Professor Klaus Ruedenberg, for his guidance over the years. 

I consider it my privilege to have had the opportunity to work 

with him. My deepest gratitude to Dr. Stephen Elbert who 

generously shared his expertise in computer programming. 

Special thanks to Dr. Michael Schmidt who, with near infinite 

patience, taught me most of what I know about quantum 

chemistry. I am also grateful to Professor Richard Johnson 

for the collaboration on the calculations of aliéné. 

Thanks to many friends and colleagues, they know who they 

are, who have helped to make my stay in Ames, in most part, 

enjoyable. In particular, I would like to thank Dr. James 

Evans who patiently listened and empathized. But most of all, 

I am forever indebted to my dearest friend. Dr. Chi-Keung 

Chan,- for his tolerance and love. Last but by no means the 

least, I would like to dedicate this dissertation to my 

parents, my sister, my brothers and their families. Without 

their continuous support and endless encouragement, this work 

would have not been possible. 


	1984
	Extensions of the full optimized reaction space model for molecular electronic wavefunctions
	Miu-to Brenda Lam
	Recommended Citation


	tmp.1415223364.pdf.YiGn7

