IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1984

Extensions of the full optimized reaction space
model for molecular electronic wavefunctions

Miu-to Brenda Lam
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
0 Part of the Physical Chemistry Commons

Recommended Citation

Lam, Miu-to Brenda, "Extensions of the full optimized reaction space model for molecular electronic wavefunctions " (1984).
Retrospective Theses and Dissertations. 8184.
https://lib.dr.iastate.edu/rtd /8184

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8184?utm_source=lib.dr.iastate.edu%2Frtd%2F8184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFOGRMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce

this

document, the quality of the reproduction is heavily dependent upon the

quality of the material submitted.

The

following explanation of techniques is provided to help clarify markings or

notations which may appear on this reproduction.

L)

.The sign or ‘‘target” for pages apparently lacking from the document

photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

.When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of “‘sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

UﬂiV@i Si Ly
Microfilms
International

300 N. Zeeb Road
Ann Arbor, M1 48106






8505838
Lam, Miu-to Brenda

EXTENSIONS OF THE FULL OPTIMIZED REACTION SPACE MODEL FOR
MOLECULAR ELECTRONIC WAVEFUNCTIONS

lowa State University PH.D. 1984

University
Microfilms
International sowon.zees Road, Ann Arbor, Ml 48106






Extensions of the full optimized reaction space model

for molecular electronic wavefunctions
by
Miu-to Brenda Lam

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
Department: Chemistry

Major : Physical Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Wor¥
Signature was redacted for privacy.

For the Majoff Department

Signature was redacted for privacy.

For the/rjffiluate College

Iowa State University
Ames, Iowa

1984



ii

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. GENERATION OF THE FULL REACTION SPACE 7
A. The Full Optimized Reaction Space Model 7
1. Objective 7
2. Configurational basis fcor the full reaction
space 8
3. Group theoretical considerations 10
B. The Point Symmetry Group D2h and its Subgroups 11
1. The spatial symmetry of orbital products 11
2. Determination of distributions i3
3. Formation of SAAPs 17
C. The Point Symmetry Groups Cmv and Douh 20
1. Irreducible representations 20
2. Orbital symmetries 23
3. Determination of complex orbital products 26
4. Determination of real orbital products 28
5 Formaticn of real SAAPs 31
D. Additional Features of the Program SAAP 32
III. POLARIZED NONVERTICAL EXCITED STATES:
A FORS STUDY OF D2h AND C2v PLANAR ALLENE 34
A. 1Introduction 34

B. Electronic Structure of D2h and C2v Planar Allene 36
C. Geometries and Basis Sets 38

D. Results of Caicuiations 43



Iv.

V.

E.

1ii

Discussion

THE INTRAATOMIC CORRELATION CORRECTION TO THE FORS

MODEL
A. Introduction
B. Atoms-in-Molecules Model

1. Intraatomic and interatomic energy
contributions

2. The AIM approach and electron correlation
3. Choices of atomic orbitals
4, The non-orthogonality problem

5. Correlation corrections for atomic and ionic
states

C. The FORS-IACC Model

1. Theoretical formulation
2. Mathematical formulation

3. The transformation from molecular SAAPs to
composite functions

4. Program TMAT
5. Program IACC

&. Illustrative applicaticn tc the ground state
of imidogen

Quantitative Results for Diatomic Moliecuies
1. Basis sets

2. FORS calculations

-

3. FORS IACC calculations

AUGMENTATION OF THE FORS MODEL BY SELECTED
EXCITATICONS FROM THE FULL REACTION SPACE

A.

Introduction

48

50
50
51

51
55
57

61

64

67

67

71

74

o]
| ad
w

ot
N
o

127
128

131



iv

1. Approaches to electron correlation 146
2. Augmentation of the FORS model 148
3. Choices of molecules 151
B. The Hydrogen Fluoride Molecule 152
1. FORS wavefunction 152

2. Augmented wavefunctions. First selection
method 155

a. Calculation at the equilibrium distance 155
b. Calculation of dissociation curve 160

3. Augmented wavefunctions. Second selection

method 163
C. The Fluorine Molecule 171
1. FORS wavefunction 171

2. Augnmented wavefunctions. First selection
method 173

3. Augmented wavefunctions. Second selection
method 177

a. Calculation at the equilibrium distance 177

o Calculaticn cf disscciaticn curve lg1
D. Conclusion 186
VI. LITERATURE CITED 188

VII. ACKNOWLEDGEMENTS 185



[

I. INTRODUCTION

Before the advent of the electronic computer, quantum
chemistry depended to a large extent upon experimental
knowledge of physical and chemical properties of molecules and
upon chemical intuition. With the exception of Hz, only
highly approximate non-empirical calculations were possible
for small molecules, and only semi-empirical calculations for
larger molecules. The computer brought with it the
possibility of performing accurate non-empirical calculations,
commonly referred as ab initio calculations, for polyatomic
molecules of chemical interest. For a non-specialist the term
“ab initio" may have too sweeping a meaning. It might give
the impression that ab initio calculations provide "accurate"
and "objective" solutions. However, the traditional definition
of ab initio calculations as introduced by R. S. Mulliken is

that stated by Allen and Karo1 in 1960, namely: (i) all

electrons are taken into account simultaneously; (ii) the
exact non-relativistic Hamiltonian with fizxed nuclei is used,

= . r. PP S
1 i,a “ia i>j “ij a,b

where the indices i,j refer to the electrons, the indices a,b
refer to the nuclei with nuclear charges Za and Zb and the
atomic units one bohr and one hartree are used; (iii) all

integrals are evaluated rigorously.



Until the early seventies, ab initio calculations were
almost exclusively SCF calculations. Over the past fifteen
years, however, a variety of effective algorithms have been
developed to yield correlated wavefunctions. Impiementation
and improvement of such algorithms rely on sophisticated
computer programs. The advances in computer technology and
availability in the last two decades have enhanced the
development in computational quantum chemistry.

The capability of performing accurate non-empirical
calculations has bridged the gap between experimental and
theoretical chemistry and experimentalists have begqun to look
to theoretical predictions for directions in their research.
Before a theory can produce meaningful results for the
experimentalists, it has to go through three stages: (i)
development of the mathematical relationships, (ii)
implementation of the algorithm, and the corresponding
computer programs and (iii) application of the programs to
specific cases. Many algorithms and systems of computer
programs have been developed over the years. The Hartree-Fock
(HF) approximation containing a single determinant, known as
the self-consistent-field (SCF), wavefunction has become
almost standardized. The essence, if not the detailed theory,
of different systems can be found in many quantum chemistry
books2™3 and references therein.

The Hamiltonian (1.1) inherently neglects the



relativistic effects. The relativistic corrections calculated
by Fraga et al.4 using the Dirac-Breit-Pauli-Hartree-Fock
method range from -70 microhartree for helium to -130
millihartree for neon to -1020 hartree for mercury.
Computationally, the estimation of relativistic effects in
molecules is difficult. Fortunately, the largest
contributions to the relativistic energy are due to inner
electronic shells. For the lighter atoms, there is sound
reason to assume that the total atomic relativistic energy is
almost independent of the atomic electronic state and the
chemical environment in molecules, which implies cancellation
of relativistic effects in :zhemical processes. Experience
shows that neglecting the relativistic effects, especially for
the first- and second-row elements, are indeed usually
justifiable.

The more crucial sources for the shortcomings of
theoretical calculations in chemical applications are
inadequate basis sets and correlation effects, i.e. the
neglect of the instantaneous repulsions between electrons.
The difference between the Hartree-Fock energy and the exact
non-relativistic energy of a particular system is usually
considered as the correlation energy. As a rule, it is a
small percentage of the total energy of an atom or molecule.
For example, for fluorine atom, the correlation energy, 0.4

hartree, is only 0.4% of the total energy -99.8053 hartrees.



The small percentage translates however into an actual value
of more than 10 eV which is considerably larger than the
experimental dissociation energy of F2 of 1.7 eVG.

Much effort has been spent over the past two decades to
search for optimal basis sets. An overview of different basis
set types is given by Carsky and Urban3. All calculations
reported in this work use the contracted even-tempered
Gaussian basis set developed by Raffenetti7 8 Bardo and

14 r

Ruedenbergg, Feller and Ruedenberglo, Schmidt and

Ruedenbergll. Polarization functions were also included
whenever appropriate.

Total recovery of the correlation effect seems impossible
at this time. However, from the chemical point of view, it is
the relative variation of the energy surface of a chemical
system which is of interest rather than the absolute values of
its energies. Upon molecule formation and in chemical

N
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reac t of the correlation encergy
the important goal of guantum chemical research is to identify
this changing part and seek for mathematical formulations to
recover it in a computationally feasible manner. A useful and
quite successful model of this type which has recently been

formulated to this end is the FORS model.
A Full Optimized Reaction Space (FORS) wavefunction is
defined as the optimal configuration interaction wavefunction

in a full space cf N-electron ccnfigurations where all



orbitals are optimized, so that <(¥|{H|¥> is an extremum. The
dimension of such a full configurational spaces may be quite
large. The definition and generation of full configurational
reaction spaces are outlined in Chapter II. A procedure is
developed for generating all Symmetry-Adapted Antisymmetrized
Products (SAAPs) which span such full configuration space and
the algorithm described has been implemented into a computer
program labelled SAAP. This code has been incorporated as
part of the ALIS program packagelz. in Chapter III,
multi-configuration self-consistent-field (MCSCF) calculations
using FORS wavefunctions are reported for the low-lying
electronic states of allene at planar geometries. This
provides the ground work for study of torsion and bending in
allene.

Although the FORS model provides an unambiguously general

and unbiased approach to obtain reliable guantitative results
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it still fails to recover all correlation energies completely
and, therefore, requires further refinement. Two possible
augmentations are discussed in Chapters 1V and V. In Chapter
IV, the theory of a semi-empirical correction method termed

IntraAtomic Correlation Correction (IACC) is developed and

quantitative results of its application are discussed. In

ad

Chapter V, improvements of FORS wavefunction by the systematic

inclilusion of additional configurations involving crbitals



outside the valence space are investigated. Such calculations

elucidate the origin of the unrecovered correlation effects.



II. GENERATION OF THE FULL REACTION SPACE

A. The Full Optimized Reaction Space Model

l. Obijective

The model of Full Optimized Reaction Space (FORS) was
first introduced by Ruedenberg, Sundberg and Cheungl3 and
further developed by Ruedenberg, Schmidt, Gilbert and
Elbertl4. It has been applied to a number of reactionsls_zo.
There are other MCSCF models with restricted configuration
selections such as the Optimized Valence Configuration

(OVC)21, the Hartree-Fock plus Proper Dissociation (HF +

PD)ZZ, the Separated Pair Independent Particle (SPIP)ZB. the
Generalized Valence Bond Configuration Interaction (GVB CI)24
and a recent calculation by Kirby-Docken and Liuzs. The FORS
model is unique in its attempt to combine consistently the
concept of a full valence space with the principle of orbital
optimization and to explore systematically the implication of
such a framework. The concept has been generalized by Roos
26-25

and co-worker to the "Complete Active Space Self-

Consistent-Field (CASSCF)" procedure which has also proven to
be successful.

The FORS model describes the electronic structure of a
molecule in terms of the best wavefunction that can be
obtained by a superposition of all those configurations which
are generated by all possible occupancies and couplings from a

"formal minimal basis" of valence corbitals on the constituent



atoms. These configurations span a "Full Reaction Space", and
MCSCF optimization30 of the orbitals in terms of an extended
set of quantitative basis orbitals determines the "Full
Optimized Reaction Space". A detailed description of the

model and its application, and an analysis of the resulting

molecular electronic wavefunction are given by Ruedenberg,

Schmidt, Gilbert and Elbertl?.

For practical application of the FORS approach. an
efficient general method of generating all configurations
spanning the full configuration space for a specified set of
orbitals is essential. The formulation of such a procedure

and its implementation is discussed in the present chapter.

2. Configurational basis for the full reaction space

The N-electron function space of the FORS model is

spanned by a rasis of Spin Adapted Antisymmetrized Products
(SAAPs! which are configurations of the form:
¥ (1,....n) = A{@, (1,..., M0 %1,...,m3 (2.1)
ky ' k Y
where Qy is a product of space orbitals
¢ (l,...,ny = £ _(1)f, _(2)...f, (n) (2.2)
k ’ ki k2 kn ’

SM . . - . _ . . o ..
and Qv is an eigenfunction of the total spin (§7) and its z



component (Sz). We choose in particular the Serber-type spin
functions, making use of the construction process developed by
Ruedenberg3l, Salmon and Ruedenberg32, Salmon et a133. The
antisymmetrizer A is defined as

A=2%23 (21)Pp

where d is the number of doubly occupied orbitals.

The MOs fki are called "configuration generating orbitals
(CGOs)". In the FORS model, these CGOs are divided into two
groups: (i) a set of "generalized core" or "closed-shell"
orbitals, all of which are doubly occupied in every
configuration, and (ii) a set of "open-shell"” or "reactive"

CGOs whose occupation numbers are less than two in at least

one configuration. The space orbitals fkj are chosen in
various ways from one set of orthonormal spatial molecular
orbitals ¢1, oz. ¢3. ceey QM which may or may not be symmetry
adapted. A basis for the full reaction space is obtained by
making for fkl' sz, fk3' ceey ka all possible choices out of
the set ml, ¢2, ¢3, cees ¢M with occupation numbers 0, 1 or 2,
conpatible with the spatial symmetry of ¥, and by associating
with each orbital product so obtained all possible spin

functions O?M, @i", @2“, ... vielding non-vanishing

SAAPs.

The ?kY of Equation (2.1) obtained in this manner merely
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define a certain formal structure of the configuration space
in terms of the orthonormal set of the CGOs. Determination of
the CGOs by MCSCF optimization30 completely determines the
?ky' An important feature of the full reaction space is that
it is invariant against any non-singular, in particular,
orthogonal transformation among the open-shell CGOs and

against a similar transformation among the core CGOs.

3. Group theoretical considerations

Each SAAP is generated from a product of orbitals which,
by virtue of the Pauli principle, can only have occupation
numbers 1 or 2. Furthermore, in case the molecule has spatial
symmetry, each SAAP can be required to belong to the
irreducible representation (irrep) of the state to be
calculated. If each orbital in turn belongs to a particular
irrep, the total symmetry of a SAAP is obtained by taking the
direct product of the occupied orbitals. Only the case of
point groups with non-degenerate representations (i.e. the
group D2h and its subgroups) and that of the groups va and
th are discussed here, since only for these have automated
computer programs been constructed. A program, called SAAP,
has been developed to generate a SAAP basis for the full
reaction space of a given number of orbitals and electrons.
It has been incorporated into the ALIS program packagelz. The

program involves two major steps: (i) the possible
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distributions of the valence electrons over the irreps are
determined and (ii) all possible SAAPs are formed for each of
these distributions. A description of the algorithm of the

generation procedure is given in the following sections.

B. The Point Symmetry Group D2h and its Subgroups

1. The spatial symmetry of orbital products

The irreps of Dzh’ namely Ag, B B B B

3u’ T2u’ T1lg’ Tlu’ T2g°
B3g, Au can be associated with the binary numbers 000, 001,

B

0io, 011, 100, 101, 110, 111 which correspond to the digits 0,
i, 2, 3, 4, 5, 6, 7. There are three reflection planes in the
D2h symmetry and each bit in the binary representation can be
thought of describing the symmetry behavior with respect to
one of the reflection operations. Combination of these
operations uniquely defines the eight irreps in the group.

The other non-degenerate point groups, namely Dz, C2h’ C2v'
C2, Ci' CS and Cl' are subgroups of D2h and the binary
representation also applies to them. Table 2.1 lists the
decimal numbers associated with the irreps for all these

groups.

For any cone of these groups, the symmetry of an orbital
product is simply obtained by combining the set of binary
numbers corresponding to the irreps of the individual orbitals

by means of the "Exclusive OR (XOR)" operation. For example,

in DZT:
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XOR{(001),(101),(111)3 = (011) (2.3)

corresponds to

3u ®A =B . (2.4)

Table 2.1. The correspondence between the elements of the
point group and binary numbers

Point Irreducible Digits equivalent to
group representation binary numbers plus 1
D2h Ag'B3u'32u'Blg'B1u’BZg'B3g'Au i,2,3,4,5,6,7,8
C2h Ag'Bg'Bu'Au 1,2,3,4
C2v Al'Bl'BZ'AZ 1,2,3,4
D2 A’BI'BZ'BB 1,2,3,4
C, A,B 1.2
Ci Ag,Au 1,2
CS A’ A" 1,2
Cl A 1

Suppose one has an orbital product containing n(«)
orbitals of representation «, for several one-dimensional

irreos, then it is seen that any even occupancy vields
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Ag = (000) symmetry, so that only the irreps occupied by an

odd number of electrons have to be taken into account. For

example, if one has a product of ten orbitals with n{(001) = 3,

n(i0l) = 2 and n(lil) = 5, then the irrep of product is simply

XOR{(001),(111)} = (110)

It is furthermore apparent that the symmetry of any orbital

products is determined by the number of singly occupied

orbitals only.

2. Determination of distributions

Suppose now that there are A one-dimensional irreps o =

1, 2, ..., A and that among the set of configuration

generating orbitals ¢1, ¢2, sy ¢M from which the orbitals in
Equation (2.2) can be chosen, there are m, orbitals belonging
to the irrep o. then Vo T Zm“ is the maximal eiectron
occupancy of the irrep «. The orbital products that can be
formed from the set Ql, ceer O (and hence the SAAPs that are
the basis of the Full Reaction Space) can now be grouped into
subsets, such that all configurations in one subset have the
same number n, of orbitals in each irrep «. These subsets are
called here "distributions of ordbitals among irreps". Any
particular distribution D is thus characterized by a set of

irrep occupancies
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D = D(nl, Noy seer Doy cuey nA) .

If N is the total number of electrons one clearly must have

A
X v, 2>2N. (2.5)
x*

It is useful to determine first all possible distributions for
the desired irrep of the state to be investigated.

Given the number of available orbitals in each irrep and
the total number of electrons, the generation of all possible
distributions of a particular symmetry is a combinatorial
problem. It is solved here by a seguence of steps which is
best illustrated by an example. Suppose that there are eleven
electrons and two orbitals of symmetry 1, three orbitals of
symmetry 2, one orbital of symmetry 3 and two orbitals of
symnetry 4, so that vy © 4, Vo = 6, vy = 2 and Vg T 4, then

the first distribution formed is

The other distributions are then generated from D1 by moving
one electron at a time in the seguence illustrated by Table
2.2. The flow diagram of Figure 2.1 displays the sequence of

logical steps of this process. Only distributions which
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Table 2.2. Sequence of distributions generated by SAAP with

eleven electrons, v1=4, v2=6, v3=2 and v4=4

n,n,nan, nin-nan, n;n,nyn,
4610 3602 2423
¢4 6 01 3521 2414
4520 3512 2324
4 511 3503 1622
4 50 2 3422 1613
4421 3413 160214
4 41 2 3404 1523
4 4 0 3 3323 1514
4 3 2 2 33124 1424
4 313 32214 06 23
4 30 ¢ 2621 0614
4 22 3 2612 0524
4 214 2603

412 4 25 2

w
o
o
o
N
o
")
D W N

w
[s)
=
-
N
o
o




A
distribution
has been
formed. Its
symmetry is
tested. If
acceptable,
distribution

is added to |

list.
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in irrep o

electrons to be distributed

Figure 2.1.

Flow chart for generation of distributions
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satisfy the set of Equations (2.5) are kept. 1In Table 2.2,
all distributions obtained in this manner are listed. If the
molecule belongs to a symmetry other than Cl' then the
syamebtry of each distribution is tested after it has been
formed by the XOR operation discussed above and, only if it

has the desired symmetry, will it be added to the list.

3. Formation of SAAPs

The first step in generating the individual SAAPs is to
find all possible orbital products for each of the
distributions found by the procedure described in the
preceding section. If the distribution is D(nln2n3... A)'
then it can be shown that the total number of orbital products

which can be formed is given by

A
P(n,n,...n,) = 0 P_(n ) {(2.6)
o -~ - m:l“ e
where
o (m_ ) k
oL m
P.(n) = } [“l{ ] , (2.7)
- “ &) ln -k
k=K
oL
with
Pa(nm) = number of possible orbital products of n,

electrons in mny, orbitals
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n, (= vm/2) = number of available reaction orbitals
belonging to irrep o

n, = number of reaction electrons occupying irrep o
in the distribution

k = number of different orbitals being occupied in

irrep a in a given product

n, - k = number of orbitals being doubly occupied in
irrep « in a given product

Km = [(na+1)/2] = the largest integer < (nm+1)/2

Km = minimum of (nm, mm)

To find the P(nlnz...) products explicitly for a given
distribution, one first generates separately all Pa(nm)
products for the nu orbitals in each irrep x. To do this, one
can use exactly the same algorithm as the one depicted by the
flow chart in Figure 2.1, if one makes the following

specifications: (i) n_ is substituted for N, the total number

@

of electrons; {(ii) j orbital index is substituted for «, the

irrep index; (iii) j

1, 2, .., mm is substituted for o = 1,
2, ..., A; (iv) the value 2 = maximum number of electrons in

any one orbital is substituted for Vir Vos cees Vo the

maximum number ©f electrons in each irrep; (v) the actual
occupation of orbital j, namely O, 1 or 2, is substituted for

n_, the irrep occupation. Furthermore, the symmetry check is

(2.9

omitted. After ail products have been fcormed for each irrep,
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the various combinations between the products from different
irreps yield all possible total products for a given
distribution.

When the orbital products, have been found, the
individual SAAPs can be determined. In any given orbital
product the doubly occupied orbitals are listed first and the
singly occupied ones thereafter, both separately in order of
increasing index number. The number of individual SAAPs which
can be formed from one product is equal to the number of spin
functions ei“. vy=1, 2, ..., that can be combined with it
(see Equation 2.1). This number depends upon the total spin
quantum number S, which is determined by the state to be
calculated and by the number of singly occupied orbitals in

the product, say T. It can be calculated using the branching

diagram and is given by the formu1a34

{ T T
res,m l ] -
T/2 + S T/2 + S+1

(2S+1) T!

- . (2.8)
(T/72 + S+1)! (T/2 - S)!

This number is all that is needed for identifying the SAAPs.
This is because each SAAP is completely characterized by the
orbitals it contains, their occupancies and the index v of its

soin function. The explicit forms of the individual spin
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functions associated with the possible indices v =1, 2,

e 8 s g

r¢s,T), are generated in another part of the ALIS program
system12

We were not able to find a formula predicting the number
of orbital products having a certain number of singly occupied
orbitals without explicitly generating them. For this reason,
it was not possible to calculate the number of possible SA3Ps
without generating the individual space orbital products. The
program has an option of going through the entire procedure
without storing the information characterizing the individual

SAAPs, but just counting the total number.

C. The Point Symmetry Groups Ccw and th
1. Irreducible representations

Consider a linear molecule lying on the z-axis. The
symmetry transformations of such a molecule are of two types:
(i) rotations C(w) about the z-axis by any angle w and (ii)
mirror reflections o, in any plane containing the z-axis.
These symmetry transformations form the group va. Every
rotation C{w) and its inverse C—l(w) = C(-w) form a class.
But all reflections oy belong to a single class.

The irreps of va can be obtained by considering the
effect of typical class elements C(w) and cv(xz) on a

spherical harmonic Ylm(e,Q):
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_ _—imw
C(w)Ylm(6,¢) e Ylm(e.m) ’ (2.9)

and

Gv(xz)Ylm(6,¢) Ylm(e,-¢) = Yl_m(9,¢) . (2.10)

The eigenvalue m is the magnetic quantum number of the complex

atomic orbital containing Ylm' It is apparent that, for

m # 0 the spherical harmonics (Ylm'Yl-m) form the basis for

a two-dimensional representation of va. It can be shown to

be irreducible. In matrix form, one has

e—imw 0
C(w)(Ylm,Yl_m) = (Ylm'Yl—m) imw
0 e
and
01
OV(XZ)(Ylm'Yl-m) = (Ylm'Yl—m) Lo ’ (2.11)
the characters are therefore
B c(wy) = e I 4 GIBE L 5 05 mw
and
(=} _
X (cv) = 0 . (2.12)

A list of characters for the first few elements for the point
group Coov is given in Table 2.3. When m = 0, it is clear
that Y10 form bases for the identity representation. There

exists however another one-dimensional representation. If ©
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Table 2.3. Character table of va
Cmv E 2C(w) L es
t 1 1 1

T 1 1 -1

I 2 2cosw 0

A 2 2cos2w 0

] 2 2cos3w 0

is a basis for

must have

and since

it follows that

so that

an

<
n

one~dimensional representation,

then one

(2.13)

(2.14)

(2.15)

(2.16)

Thus, there exist two types of basis functions denoted as ¢+

and ¥_ where



oy w+ = w+ and o, b_ = -y . (2.17)
Under a rotation C(w), ¥_ behaves in the same manner as ¢+

Clw) b, = b, and Clw) O_ = W_ . (2.18)

The function v, is a basis function for the identity
representation denoted by Z+, while the function Y_ is a basis
function for another one-dimensional representation denoted by
£~ which does not occur for one-electron functions. 1Its
character is also included in Table 2.3.

If a linear molecule also possesses an inversion centre

then the appropriate symmetry group is

Its character table is readily obtained from that of va and

given in Table 2.4.

2. Orbital symmetries

Complex symmetry adapted orbitals of linear molecules can
De expressed as iinear combinations of atomic orbitals located
at various points on the molecular axis and have the same

magnetic quantum number m. They have therefore one of the

following forms:
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Table 2.4. Character table of th

E 2C(w) ®g
+
z 1 1 1
g
T~ 1 1 -1
g
Hg 2 2cosw 0
Ag 2 2C0os2w ¢]
M 1 1 1
u
z 1 1 -1
2 2cosw 0

2 2Cc0s2w 0




-m

In general,

symmetry:

tio>,

|jﬁ+>,

lk6+>,

The orbitals |jw_ > and |Jj7

together,

fo(r,z)
fl(r,z)

fl(r,z)

£
&

2(r.z)

fz(r,z)

fm(r,z)

f (r.,z)
m

exp(ig)
exp(-ig¢)
exp(i2é¢)

exp(-12¢)

exp(imd)

exp(~-imo)
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as

orbitals
orbitals
orbitals
orbitals

orbitals

there will be available several orbitals of each

i =
L3a_>, =
1k8 >, k =

.. etc.

span the irrep 7=

of C_ .
ooy

.o, (o)
esey, m(wW)

L A ] m(S)

_? have the same factor f(r,z) and

The orbitals {jr, > and

|j'm,>, on the other hand, have different radial factors and

do not span any irrep together.

indices i,

k etc.

The same holds for the

It was shown in the preceding section that the class o

introduces a differentiation of the symmetry classification

(+,-) only for the one-dimensional representation I, but not
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for any of the two-dimensional representations. This is
related to the fact that the character of Oy, vanishes in the
two-dimensional irreps for m > 0. Since on the other hand,
orbitals cannot have £ symmetrv, as mentioned eariier, the

class o, can be disregarded in discussing the symmetry

behavior of indiwvidual orbitals, i.e. the group C, 15 adequate

to identify the orbital irreps. However, within the group Cw,

the orbitals wm and w—m belong to different one-djmensional

irreducible representations when m # 0. Therefore, if one
works with complex orbitals, the situation is similar to DZh
in that all orbitals can be considered as belonging to one-

dimensional irreps. In Cw, these are labelled by
0, +1, -1, +2, -2, +3, -3, etc.
In th, they are labelled by
0gq, Ou, +ig, +1lu, -1lg, -iu, +2g9, +2u, -2g, -2u, etc.

3. Determination of complex orbital products

Since the complex orbitals can be treated as belonging to
one-dimensional representations, one can use the procedure
described for D2h also in the present case. First, one
determines the possible distributions of electrons over the

one-dimensional orbital irreps, then one finds all possible
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orbital products for each distribution. Finally, one could
combine each orbital product with the various spin functions
appropriate for the number of singly occupied orbitals in the
product. The only part which is different for Cmv is the

symmetry testing.

From the form of the orbitals, it is apparent that any

cne orbital product can be written as

N
P = F(rlrz...rN,zlzz...zN) exp[i(§=lmk¢k)]
and also that
N
Clw) P =P expliw(Z m )1 (2.20)
_1 K
k=1
N
30 that P belongs to the one-dimensioral irrep with M = (I mk)
k

of Cmv. Thus, in generating all possible distributions one
follows exactly the combinatorial procedure outlined in the
flow chart of Figure 2.1. The symmetry test is now an
examination of the total magnetic quantum number I m, . Only
if this quantity is equal to the value M of the state which is
to be calculated, will the distribution be kept. In case that
M is non-zero, the state is doubly degenerate in va, So that
the wavefunction for +M and -M have the same energy. For this

reason, the program tests only on values M > 0.

If the symmetry is Dmh’ then there is an additional test
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of the g/u character of the product. For g symmetry, there

must be an even number of u orbitals and for u symmetry, there

must be an odd number of u orbitals.

After the distributions have been found, all possible
orbital products of complex orbitals are formed for each
distribution by exactly the same procedure as was described in

Section II.B.2 for the case of D2h symmetry.

4. Determination of real orbital products

From the products of complex orbitals just found, one can

form complex SAAPs by combination with the appropriate spin
functions @iM. Such SAAPs belong to irreps of va and th
and are eigenfunctions of 32 and Sz. However, most molecular
programs, including ALIS, use only real orbitals. It is
therefore necessary to determine those real SAAPs which are
required to express each complex SAAP having the appropriate

~
P4

£ C cr D .
oy oh

B C
Now any product of complex orbitals such as considered
above can be expressed in terms of real orbitals by expanding

the right hand side of the equation

P = ﬁ fk(rk’zk) exp(lmk¢k)

=1 fk(rk,zk) (cos kawk + i sin ka¢k) (2.21)
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in terms of a real and a complex part

P = Px + i Py . (2.22)

It is evident that Px and PY are linear combinations of
products of real orbitals containing the factors cos(m¢) and

sin(m¢) instead of the complex factors exp(im¢) and exp(-im¢).

It should be noted that, Ex contains only products having an

even number of factor sin(mé¢), and that Py contains only

products having an odd number of factor sin(me). It is

therefore straightforward to identify all those products of

real orbitals which are needed to express Px or Py for any

given product P of complex orbitals.
When Z m, does not vanish, P_ and P_ span one two-
k x ¥
dimensional representation of va which 1s identical to that

spanned by P and its complex conjugate

* S Y
P = ﬁ fk(rk’zk) exp(—lmk¢k, . (2.23)

Consequently, for M # 0, one can choose only to consider
those real products which are required to expand Px' However,
if Z m, vanishes, then Px belongs to the one-dimensional irrep

k
Z , whereas PY belongs to the one-dimensional irrep £ and

thus the real products needed for Px or PY must be considered,

depending upon whether the required symmetry is £t or T,
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Consider for example, the product

_ 2
P = |1!+) |2ﬁ+)|18_>|28+> . (2.24)

It has M = L m, = 1+41+1-2+42 = 3 # 0 and only its real part Px
i

is considered. It contains the following twelve real products

2 2
|lwx> |2nx>|18x>|28x> {lwy) |2xx>|18x>|28x>
2 2
in_> > > > 17 > > >
i L 2|21ry llsy |28x | wy 2|2xy |18y>|28x
llwx> |2wy>|1sx>|2sy> llxy) |21y>i18x>128y>
2 2
llnx> |2wx>|1sy>|2sy> [1wy> |2wx>118y>|zsy>
|11x>|1wy>|21y>l18x>128x> llwx>|lxy>121x>|18x>i28y>
ilvx>ilwy>]21x>3lsy>|28x> |1wx>|11y>12wy>|1sy>1zsy>
(2.25)
where the notations
= f.(r,z) cos & , . = f,(r,2) sin ¢ ,
X i Y ES
8§, = f,(r,z) cos 2¢ , 8. = £,(r,z) sin 2¢
= 2 Y 2
have been used. On the other hand, the product
- _ 2 -
P = lﬂ+) {8 > (2.26)

has M = T m, = 1+41-2 = 0. If the desired symmetry is £ , then
i
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the complex part Py is required, and the real orbital products

2 2

lwx) |8Y> p Iﬂy) |sy> ’ wa>{ﬂy>|8x) (2.27)

are relevant.

5. Formation of real SAAPs

Each of the real products found by the procedure of the
preceding section is combined with all spin functions

appropriate for the number of singly occupied orbitals to form

real SAAPs. Thus, a _number of real SAAPs are derived from

each one product of complex orbitals.

In this context, it is to be noted that the number of
singly occupied orbitals which are relevant for the choice of
spin functions is not the number of singly occupied orbitals
found in the individual real orbital products, but the number

of singly occupied orbitals occurring in the complex orbitail

product from which the real products are derived. Thus, e.qg.,
there are three singly occupied orbitals in the complex
product if Egquation (2.24). Consequently, assuming a doublet
state (S=1/2) say, all twelve real orbital products of
Equation (2.25), even those containing five singly occupied
orbitals, have to be combined only with the two doublet spin
functions corresponding to three electrons. Thus, the orbital

product of Equation (2.24) yield twenty-four real doublet
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SAAPs which are required to express the real parts of the two
complex SAAPs that result from combining the two three-
electron doublet spin functions with the complex product of
Eguation (2.24).

In this manner, all necessary real SAAPs are deduced from
every previously determined compiex orbital distribution.
This procedure generates all those SAAPs, made from real
orbitals belonging to irreps of va or th, which are required
in the Full Reaction Space for the construction of N-electron
spin eigenfunctions belonging to the desired irreducible
representation of C‘lW or Dooh and having the desired spin
multiplicity. Those linear combinations of these SAAPs which
form bases for irreducible representations of va or th

obtain by diagonalization of the Hamiltonian matrix during the

molecular calculation.

D. Additional Features of the Program SAAP

There is an option in the program SAAP which allows to
generate all excitations of a certain type (i.e. single,
double, triple, etc) out of the Full Reaction Space into a
space of additional "external" orbitals. For example, in the
case of doublie excitations, the program wiil generate alil
possible oczupancies of external orbitals by two electrons.
Each of these is then combined with all distributions of (N-2)
electrons over the FORS orbitals. The symmetry test is of

course applied to all N electrons.
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The program also has the option that additional specified
distributions of electrons over the available orbitals can be
included in the configuration list by explicit input. This
option aliows for deletion or addition of configurations from
or to the Full Reaction Space. It also makes possible the
construction of SAAPs for symmetry groups with multi-
dimensional irreducible representation by providing

appropriate distribution as explicit input.
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III. POLARIZED NONVERTICAL EXCITED STATES:
A FORS STUDY OF D, AND Cov PLANAR ALLENE
A. Introduction
The allene excited states investigated in this chapter is

an application of the FORS model. The location and
characteristics of minima on excited state potential energy
surfaces often are controlling features in photochemical
reactions35'4o. It is essential for photochemists to have a
detailed understanding of the electronic nature and dynamics
of molecules at these minima if mechanisms and reactivity are
to be understood. For many organic molecules containing =
bonds, the location of minima has long been accepted to occur
at 90° twisting, however, it was only recently recognized that
strong excited state polarization, approaching zwitterionic
character, will exist at this nonvertical geometry4l. Salem
termed this unusual phenomenon "sudden polarization"; however,
it now seems, at least for ethylene, that the degree of

2

suddenness depends critically on the reaction pat:h4 . Tnis

polarization has been the subject of numerous theoretical

studiesl7’4l-43 and its existence seems no longer

controversial. Polarized nonvertical excited states have been
suggested as intermediates in a variety of organic

1,4

. 3 4 . . 3 ] .
photoreactions which include isomerizations and addition

of protic solvents to 7 bonds, although definitive

experimental evidence is difficult to obtain and interpret.
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Allenes, like most alkenes, have long been believed to

twist to planar geometries in their lowest singlet and triplet

excited states45. Obvious photochemical manifestations of

this are the facile photoracemization and photoresolution of
chiral allenes46. As one example, it has been observed that
optically active i,2-cyclononadiene undergoes rapid

racemization on direct irradiation, in addition to

isomerization to a bicyclic cyclopropene47

oH H

N
\
S
>

The first theoretical study in which the involvement of
planar excited states in allene photochemistry was explicitly

considered was an often overlooked but insightful paper by

Borden45. Based on Pariser-Farr-Pople calculiations, Borden

conciuded that excited state twisting in both S1 and Tl should
be facile and that the iowest singliet D2h state is open-shelil

(Au), with two low-lying closed-shell excited states. This is
precisely the situation required for "sudden polarization"4l.

For thermal isomerization, the intermediacy of planar

geometries has been the subject of a number of ab

48,4%a-h 491

initio and semi-empirical theoretical studies,
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which have led to a wide range (48-82 kcal/mol) of predicted
values for the barrier to rotation in allene. 1In many of
these studies, energies of the low-lying D2h states, 1Au, 3Au,
llAg and ZlAg, were calculated, however, the major point of
interest was the ground state rotational barrier. In the most
definitive study, Seeger et al. have shown that this ground
state barrier should occur at a bent (CZV) geometry499, and an
open-shell 1Au state. More recently, Krough-Jespersen has
recalculated this barrier using extended basis set geometry
optimization and with inclusion of correlation energy49h. A

value of ca. 50 kcal/mol is predicted in both studies, which

is in good agreement with estimates from experimental work of

Roth and co—workersso.

B. Electronic Structure of D2h and C2v Planar Allene

Figure 3.1 shows schematic 7 molecular orbitals for
planar allene, and their correlation on passing from D2h to
C2v‘ On inplane bending, the 2b2u nonbonding orbital

{correlating with Gal) acquires significant hybrid

character48'50 and is lowered in energy, while the 1b2

g
nonbonding orbital (correlating with 1a2) is raised somewhat.
As it is shown below, the resultant orbital crossing on
bending has potentially important photochemical consequences,
since this defines the existence of two excited state minima.

Population of these orbitals gives rise to low-lying

states which have either pronounced diradical (D) or
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Figure 3.1, Molecular orbitals of planar allene
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zwitterionic (Z) character. For D2h' these are:

1 3 2 1 1 1 3
Au' Au ...(1b3u) (lbzg) (lb2u) Dl' Dl(DZh)
1 2. 2 1

1 Ag ...(lb3u) (;bzg) zl(DZh)
1 2 2 1

2 Ag ...(lb3u) (lb2u) ZZ(DZh)

g
one b2u closed-shells comprising the o molecular framework.

Here, ... represents the four a_, one b3g, three b1u and

For C2v:
1 3 2 1 1 1 3
Az, A2 ...(lbl) (6a1) (laz) Dl’ Dl(CZV)
1l 2 2 1
1 A1 ...(1b1) (6a1) Zl(CZV)
1 2 2 1l
2 Al ...(lbl) (laz) ZZ(CZV)

In this case, ... represents five a, and four b2 closed-shells
of the o skeleton.

it is readily predicted that the open-shell states (Au or
A2 symmetry) will be nonpolar, while the four closed-shell
states (Ag or A1 symmetry) will be strongly polarized in
specific planes, as represented by structures 1 - 4 below

(inplane orbital occupation shown).

C. Geometries and Basis Sets
FORS calculations were performed at three points: the two
relative minima (180° and 102.8°) and the intermediate point

{135.4°); these are shown below as I, II and III.
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It is important to recognize that 180° and 102.8°
correspond to excited state minima; remaining state energies
will be vertical with respect to these.

The atomic basis used in the calculations was cf double
zeta quality. This consisted of a 10s/5p set of even-tempered
Gaussian primitives11 generally contracted to 3s/2p on carbon,
and a 4s set of Gaussian primitives scaled by 1.2 and
generally contracted to 2s on hydrogen.

In the FORS wavefunction for each planar allene state,
inner shell and o framework orbitals are held to double
occupancy, while the remaining four electrons are distributed
among the four n-type orbitals shown in Figure 3.1. This
leads to eight SAAPS for the zwitterionic states, and four
SAAPs of like symmetry for the diradical at each geometry.

The small number of coniigurations permits optimization for
each state separately in an MCSCF calculation. The o skeleton

can then readjust to the varying v electron distributions.

e o o

excitations (up-down correlation). Thus, the FORS-MCSCF
calculations may be expected to yield reliable estimates for
electronic distributions and excitation energies. For

comparison, SCF calculations also were performed for each

state.
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D. Results of Calculations

SCF and FORS-MCSCF total energies and excitation energies
for lDl' lZ1 and lZ2 states of planar allene at geometries
I-ITII are listed in Table 3.1. Each energy listed is from an
individual optimization for that particular state. Orbital
occupation numbers for the two minima are given in Table 3.2,
gross Mulliken populations in Table 3.3 and molecular dipole
moments are listed in Table 3.4. For comparison, we note that
absolute SCF energies for the llAg (DZh) and llAl (CZV) states
are within 0.04 hartree of the previously reported 6.31G* at
the same geometriesso. Energiez given are the appropriate
roots of SCF or MCSCF calculations. Figure 3.2 plots the
relative energies.

Polarization in S1 is well-described by the simple
zwitterionic structures 1 and 3, since these configurations
dominate the MCSCF wavefunctions. This is reflected in the
occupation numbers, Mulliken populations and dipcle moments.
Inspection of Table 3.3 shows that the 1D1 states have
balanced ¢ and 7 electron distributions. while lZ states are
strongly polarized. The localization of central carbon
polarization in orthogonal ¢ and w molecular orbitals is
fundamentally different from a twisted 7 bond (e.g. ethylene)
in wnhnich positive or negative character is associated with
different carbons. Additionally, this ¢/% polarization

permits significant minimization of effective charge



Table 2.1. Energies of electronic states of planar allenes

Geometry State No. of Energies (in hartree)a
SAAPs MCSCF SCF
I D a o) ~115.7973  -115.7510
Zh u 1
(0.657) (0.465)
1ta *z) -115.7472 -115.7208
i (2.020) (1.286)
ZlAg (*z,) -115.6568 -115.6152
(4.480) (4.159)
I c,, ‘a, o -115.8214 -115.7680
(135.4°%) (0.0) (0.0)
llAl (tz)) ~115.7166 ~115.6680
(2.852) (2.724)
2'a; 1z, -115.6785 -115.6575
(3.889) (3.007)
111 C,, 'a, dpp) -115.7741  -115.7175
(102.8%) (1.287) (1.377)
1'a, (tz -115.7405  -115.6951
i (2.202) (1.985)
2'a, (‘z,) -115.5396 -115.5045
(7.669) (7.170)
a

Numbers in parentheses

lowest state calculated LAz (CZV, 135.4%).

(in eV) are relative to the
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Table 3.2. Occupation numbers for ¥ orbitals of D and C
2h 2v
planar allenes

Orbital occupation numbers

Don 1b3u b,y Zbou 2b3y
1a (Ip
u 1) SCF 2.0 1.0 1.0 0.0
MCSCF 1.906 1.0 1.0 0.094
1 1
1°A (7Z)) SCF 2.0 2.0 0.0 0.0
MCSCF 1.983 1.937 0.007 0.072
1 1
2°A_ (72 SCF 2.0 0.0 2.0 0.0
) MCSCF 1.805 0.229 1.956 0.010

Orbital occupation numbers

0
C2v (102.87) lbl 6a1 la2 Zbl
lA 1
5 ( Dl) SCF 2.0 1.0 1.0 0.0
MCSCF 1.866 1.0 1.0 0.134
1 ]
1°A, (‘Zl) SCF 2.0 2.0 0.0 0.0
MCSCF 1.820 1.980 0.172 0.028
1 1

()
N
tn
(9]
tt
N
>

.0 0.0 2.0 0.0
MCSCF 1.975 0.036 1.854 0.135
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Table 3.3. Charge distribution in planar allene states®
State Mulliken populations (MCSCFEF)
C1 C2 Hl HZ
1 .1
D2h Au { Dl) 5.390 4,880
0.84 -
1.010 0.980
11a (1zl> 5.285  4.336
g 0.77 -
1.405 1.184
1l 1
27A_ ( ZZ) 5.511 5.464
g 0.87 ———
0.689 0.666
1 1
C2v AZ ( Dl) 5.370 4.889
0.85 0.83
1.020 0.961
1 1
1 Al 4 Zl) 5.549 5.451
0.83 0.88
0.761 0.499
21Al (*2,) 5.183  4.449
0.83 0.78
1.337 1.2%1

2 at geometries I and III shown in the text.



45

Table 3.4. Dipole moments for C2v (102.80) geometry

State Dipole moments (debye!
SCF MCSCF
1 1
Az ( Dl) 0.75 0.72
1 1
1 A1 ( Zl) 4.01 3.39

1 1 _ _
2 Al ( Zz) 1.11 0.71
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separation through weightings of the 1b3u (DZh) and 1bl (CZV)

orbital coefficients, which can partly compensate for central
carbon charge deficiency or excess. The 3.39 debyes MCSCF

dipole moment (Table 3.4) calculated for the lowest C, 11A1

state is quite substantial for a C3 hydrocarbon. Due to its

substantial Rydberg character, 122 (CZV) is not well

represented by the simple valence representation 4. This can

be corrected by having a Rydberg function in addition to the

basis set used.

The order of the various states is in excellent agreement

with qualitative predictions and the results of previous
calculations48_50. SCF and MCSCF results are gualitatively

similar, however, the energy difference between 121 (D,,) and

2h
lZ1 (CZV) decreases from 0.70 eV (SCF) to 0.18 eV (MCSCF). At

the intermediate geometry (II) in the vicinity of the avoided

crossing, SCF energies for 1Zl and lZ2 are quite close (0.28

eV); inclusion of cecrrelation energy in MCSCF calculation

predictably increases this to 1.04 eV. It is noteworthy that
the gap between the lD1 and 121 is quite small: 1.36 eV in DZh

and 0.61 eV in CZV' Nonadiabatic coupling might lead to

relatively rapid internal conversion at these qeometries43

4

-Q =1
but it is still anticipated that a finite lifetime (10 “-10 12
s} for these polarized species. It has also been suggested
that in highly pelar media, "Z., might become the ground

1
51
state due to solvation.
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E. Discussion

Previous theoretical investications of the C3H4 potential
energy surface have explored the barrier to inversion in
allene49, thermal and photochemical opening of cyclopropene to
a vinyl catbenesz, and the cyclopropylidene to allene
conversion53. There is also an immense interest in the
excited state surfaces, specifically the location and
electronic nature of "sudden polarized" minima or "funnels"
and their potential involvement in allene photoreactionsl7.
It was suggested Scheme 3.1 may be the two possible pathways
toward planarity in allene through twisting and bending or
simply twisting of the 7 bond. As in ethylene derivatives,
this 7 bond rotation provides a simple mechanism for
interconversion of stereoisomers which, in allene, are
enantiomers. Racemization from both singlet and triplet
states of allene has been observed experimentally46.

Zwitterionic planar species have been proposed for the
structure of small-ring allenes such as 1,2—cyclohexadiene54,

in which the allene is constrained to near-olanarity.

However, it has been shown theoreticallyss, and supported by
. 56 . . . .

experiment that this molecule has a chiral equilibrium

structure. The zwitterions are excited states and should not

be involved in ground state reactions.
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IV. THE INTRAATOMIC CORRELATION CORRECTION TO THE FORS MODEL

A. Introduction

For more than a century, chemists have thought of
molecules as collections of atoms held by chemical forces in
close proximity to each other, and this view quite naturally
prevailed during the early stages of quantum chemistry, when
the valence bond (VB) approach as well as the molecular
orbital (MO) approach were formulated in terms of minimal
basis sets of atomic orbitals. However, as the originally
used minimal basis of Slater AOs gave way to the modern
practice of using extended AO bases, and as self-consistent-
field wavefunctions augmented by configuration interaction
supplanted the simple VB and MO models, the role played by
atoms in molecules became obscured. In the context of
accurate ab initio work, the traditional picture of a molecule
formed by atoms appeared blurred and its validity limited to
the realm of rough arguments.

Threough the recent develcpment ¢of the FORS modell4 the
ccncept of the atomic minimal basis set has however been
rehabilitated within the framework of quantitative ab initio
calculations with extended bases because, as discussed in
references 1l4b and l4c, FCRS wavefunctions can be cast in a

form which reveals the manner in which atoms participate in
molecular binding.

In the present chapter, it will be shown th
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analysis has a further benefit: it permits the improvement of
FORS wavefunctions through a semi-empirical correction for
that part of the electron correlation which still remains
unaccounted for in the FORS model. It is based on reasoning
which is related to the "Atoms-in-Molecules" (AIM) approach

advanced over three decades ago by Moffitts-]—s9 and

subsequently improved by Hurley60-67. Before discussing the

extension of the FORS model in more detail, essential features
of the Atoms-in-Molecules method will be outlined. An earlier
review of this subject was given by Parr68 and a later one by

Balint-Kurti and Karplus®?.

B. Atoms-in-Molecules Model

1. Intraatomic and interatomic energy contributions

Iin the early fifties, Moffitt realized the fact that the
errors in molecular ab initio calculations of his day, even
though amounting to only about one percent of the total
molecular energies, were still larger than most chemical
energyvy differences. such as bond energies,., excitation energies
and activation energies, and he recognized that it was
impossible to remove such errors with computational techniques
available at the time. This error, Moffitt argued however,
lay mainly in certain intraatomic energy ccntributions which

es  waea!

proposed therefore a correction scheme based on a partitioning
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of guantum mechanical molecular energy expressicns into
intraatomic and interatomic terms. The former are much
larger, but they are presumed to be obtainable from
spectroscopic data of free atoms with much greater accuracy
than they can be calculated. The latter on the other hand are
substantially smaller than the former, and they are presumed
to be obtainable with sufficient accuracy from molecular
calculations. Moffitt57 successfully applied improved
potential curves for several valence states of molecular
oxygen and he subsequently explored the concept of atomic

59

valence states in molecules
Moffitt’s approach is based on the expansion of molecular
electronic wavefunctions in terms of what he termed "Composite
Functions" (CFs). Consider for example a diatomic molecule
and let lAi> and lBj> be the exact wavefunction of the i-th
state of the free atom A and the j-th state of the free atom B
respectively. For simplicity of language and discussion, the
states lAi> and QBi> will also include ground and excited
states of all positive and negative ions of atoms A and B. A
composite function for the diatomic molecules AB is then any

function
*
SA.Bj> = NijA {lAi>;Bj>} ’ (4.1)

where A* is the coset antisymmetrizer which produces a totally
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antisymmetric molecular wavefunction from the product of the
two antisymmetric atomic state functions, and Nij is a
distance-dependent factor that normalizes lAiBj>. At finite
moiecular geometries Qifferent composite functicns are usually
non-orthogonal, just as atomic orbitals on A and B have
non-vanishing overlap integrals. In order to determine
molecular wavefunctions as expansions in terms of CFs, such as

given by Equation (4.1), it is necessary to evaluate the

matrices

47]
]

19,61 = (ByBsIAB , (4.2)

e 9
]

i9,k1 = B;BSIHIABD , (4.3)

where H is the Hamiltonian, and to solve the corresponding
eigenvalue problem in which the eigenfunctions are a complete
set of composite functions.

Moffitt then made the observation that the gquantities

Vig,xr T Hisoxa
s.

15,0 (B + BB + E(A) + E(BDIZ  (4.4)

have the character of interatomic interaction energies. 1In

this egquation, the gquantities E denote the energies of the

respective free-atom states, e.qg.



54

E(Ai) = (AiIHAIAi) v etc. , (4.4a)

where HA is the Hamiltonian of atom A. This contention

Moffitt58 justifiied for the case that lAi> and (B.> are exact

atomic states, and he made it also plausible for analogous

quantities

Vij.el = Hig,xa

- Sij,kl{E(Ai) + E(Bj) + E(Ak) + E(Bl)}lz (4.5)
which are derived from approximations ‘gi>' |§j> to the

exact atomic states |Ai> and |Bj>.

The conjecture made by Moffitt was that reasonably good
approximate ab initio wavefunctions will yield usable
approximate values for the interatomic gquantities S..

ij. k1l

vij,kl' bhut not for the total matrix elements Hij,kl which are

mixtures of interatomic and intraatomic quantities.

and

Specifically, Moffitt58 proposed that the quantities Sij ki
r

and Gij %1 can be taken as adequate approximations for
”
S.. .~ and V__. in Equation (4.4). Introduction of these
ij, ki i3,k
substitutions in Egquation (4.4) and combination of Egquations

(4.4) and (4.5) yields then directly the following

approximaticn for the matrix elements Hij T
r

15,k T %15,k Siq,k1 T Bk v (4.6)
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where

AEij,kl = [AE(Ai) + AE(Bj) + AE(Ak) + AE(Bl)]/Z » (4.8a)

with

AE(Ai) = E(Ai) - E(Ai) ’ etc. (4.6Db)

Equation (4.6) defines the AIM Hamiltonian in Moffitt’s final
formulation. The second term on the right hand side of
Equation (4.6) manifestly represents corrections which are
expected to remedy the intraatomic deficiencies in the
approximate Hamiltonian matrix aij,kl' From an operational
point of view, the procedure is to work in terms of certain
approximate CFs using the corrected Hamiltonian ﬁ. instead

ij, k1l
of the "direct" Hamiltonian éij,kl in solving the eigenvalue
problem. Any specific implementation of the AIM approach
clearly depends upon the number and types of approximate CFs
included in the wavefunction expansion and upon the manner in
which the correction terms AE.. .. are determined.

4

2. The AIM approach and electron correlation

To date, the AIM method has only been applied to valence
states of molecules and, for these cases, it has been assumed
that the expansion bases are derived from atomic states [Ai>

corresponding to those approximate atomic configurations
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1Ki> which are obtained from the various possible

occupancies and couplings of a minimal basis set of atomic
valence orbitals through atomic open-shell SCF calculations.
When the CFs formed from such approximate state functions
lgi> and |§j> are used to calculate the matrices g, §

and ﬁ, it is apparent that the corrective energy differences
AE(Ai) etc. of Equation (4.6b) are nothing else but the
correlation energies for the respective states of the free
atoms. Moreover, assuming that all possible valence A0
configurations, adapted to spherical symmetry, are included in
the calculation of the E(Ai), it is known that the |Ai>
actually include "degeneracy-type" correlations such as
result, for example, from the mixing of configurations of the

zpn and sopn+2 (n ¢ 4) in some atomic states. More

types s
specifically then, the energy differences AE(Ai) represent the
"dynamical" parts of the correlation energies of the various
atomic states.

On the other hand, it is also apparent that expansions of
approximate molecular wavefunctions in terms of the full set
of CFs formed from these approximate atomic states 'gi> and
|gj> take into account all those types of correlations which
result from different occupations and couplings of the valence
orbitals of both atoms in a diatomic molecule. Such
approximate molecular wavefuncticns include therefore again

all degeneracy-type correlations, some of them being of the
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aforementioned intraatomic type, but most of them now having
interatomic character.

In light of these considerations, it must be inferred
that the corrective terms in Equation (4.6) can be expected to
compensate mainly for dynamical correlations which are missing
in the described approximate wavefunctions. The manner in
which this correlation is accomplished moreover implies that
this implementation of the AIM concept provides a way of
estimating molecular dynamical correlations based on the
assumption that, even in molecules, they are essentially
atomic in nature. It is for this reason that Hurley called
his further developments of the AIM approach the Intraatomic

Correlation Correction (ICC) method.

3. Choices of atomic orbitals

The discussed AIM implementation is based on approximate
CFs which are constructed from a minimal basis set of atomic
orbitals (MBS AOs). Any quantitative implementation depends
therefore on the manner in which these MBS AOs are chosen.
The decision is non-trivial as is illustrated by the data in
Tables 4.1 and 4.2 for fluorine atom. Table 4.1 offers a
comparison of errors due to approximation of the Hartree-Fock
AO0s (lines 3 and ¢ minus line 2} with the correlation error
{line 2 minus line 1) and the relativistic correction (line 1)

2, 5

for the ground state 2P(15225 2p~). Table 4.2 exhibits the
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Table 4.1. Errors in calculating the fluorine ground state

Type of calculation Error(hartree)a
1. Correlated, unrelativistic 0.0805
2. Uncorrelated, unrelativistic 0.4085

3. Uncorrelated, unrelativistic, optimized singile

exponential AOs instead of exact SCF AOs 0.9413
4. Similar to 3, but with Slater AOs instead of
exact SCF AOs 0.9517
2 Error = (Energy of quoted calculation) - (Exact
energy), Exact energy = -99.8834 hartrees70a.

Table 4.2. Errors in calculating various s&ates of fluorine
with the same minimal basis set

State Error(hartree)b
F Zpi1s42s%2p°) 0.0016
F 2501522520 0.0190
F ls(1s%25%2p°) 0.1518
Ft 3p(1s?2s%20h) 0.1075

% The minimal basis set is that of the near Hartree-Fock
AO0s obtained variationally for the 2P(1522522p5) ground state

with an even-tempered l4s, 7p basis of gaussian primitives.

Error = (Energy obtained for Hartree-Fock type energy

with basis set quoted under a) - (Exact SCF energy for each
state).
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basis set errors incurred when the MBS which is optimal for
the ground state SCF approximation is used to calculate
Hartree-Fock~type energies of other states. Also noteworthy
in this context is the error resulting from using a minimal
basis set rather than an extended basis set in molecular
calculations. Even if the minimal basis is of Hartree-Fock-
type quality (the optimal case), the calculated energy of F2
in a full set of CFs differs by about 40 millihartrees from
that obtained with an extended basis and, in other diatomics,
the error can be even more substantial.

Although it might seem reasonable that the atomic
correction terms AE(Ai) of Equations (4.6a,b) should be
calculated with approximate AOs which are identical to those
that actually occur in the molecular calculations, such a
procedure consistently yields substantial overestimates for
the molecular binding energies. Hurley®? attributed this to
the large corrections obtained for the approximate CFs of
excited and, in particular, ionic states when ground state AOs
are used to calculate them. This insight led him to formulate
the Intraatomic Correlation Correction (ICC) procedur961’62, a
substantive and essential advance over the AIM approach. The
ICC calculations are based on a minimal basis set of
Slater-type atcmic orbkital, and the approximate atemic
energies E(Ai), é(Bj) needed for the determination of the

corrected terms AE(Ai), AE(Bj) are calculated by optimizing
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the orbital exponents for each atomic and ionic states
separately, regardless of the value which these exponents have
in the molecular calculation that yields gij,kl
Gii,kl’ The orbital exponents in the molecular calculation,

and

on the other hand, are most advantagecusly obtained by
minimizing the uncorrected molecular energy for the molecular
state under consideration.

A physical justification of this way of determining the
intraatomic correction terms is provided by the observation
that dynamical correlation energies are surprisingly
independent of orbital size and shape. Consider for example
the correlation error of two electrons in one s-type orbital.
This error ° is 1.08 eV for H , 1.14 eV for He, 1.18 eV for
Li* and 1.24 eV for Nes+; and it varies from 1.12 eV to 1.00
eV for the inner shell correlations from Li to Ne6+ 71 it

even remains approximately constant when atoms are

"Compressed" Dy enciosii

Gregori72 found that the correlation energies of He, Li and

Be2+ changed by at most 0.02 eV when the radius of the

enclosing box was reduced from R=w to R=1] bohr. The same is

true even with an additional center as the correlation energy
19

for the H, molecule is 1.1 eV ~. Considering larger systems,
2

the correlation error

4

+ 2+
or F, Ne' and Na are 8.82, B8.92 and
9.14 eV respectively73. It may also be noted that a similar

constancy persists for cptimal Slater-type minimal-basis-set
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SCF approximations; for example, the correlation-plus-MBS

truncation errors of H , He and Li+ are 1.49, 1.51 and 1.54 eV

respectivelyel.

In later work, Hurley66 took a further step in the MBS
approach, namely he used optimal atomic Hartree-Fock SCF AOs
(linear combinations of Slater-type AOs) for the determination

of the correction terms AE(Ai), and scaled atomic HF-SCF AOs

for the molecular calculations. The problem with this
procedure is that atomic HF-SCF AOs are known to perform more
poorly as minimal basis sets for molecular calculation than do
Slater-type AOs, as discussed in Reference 1l4c.

Arai74 also considered the need for distortions of atomic
wavefunctions in molecules. However, the mathematical
complexity of his "Deformed-Atoms-in-Molecules" method has

precluded wider application.

4. The non-orthogonalitv oroblem

The implementation of the basic ICC idea, namely, to
correct for intraatomic correlation errors, would be
conceptually most straightforward if the CFs would remain

orthogonal at all internuclear distances. If they were, then

the fundamental Equation (4.6) would reduce to

~

o2

Higoer ® Pigok T Hige T 255 Sig,a , (4.7)

with
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AEij = AE(A;) + AE(Bj) ’ (4.7a)
and the meaning of this equation would be physically clear,
namely: the Hamiltonian diagonal element of each CF embodies a
correlation error which is the sum of the correlation errors
of the atomic states contained in that CF, and these errors
are corrected separately for each CF by Equation (4.7). From
this perspective, Moffitt’'s Equation (4.6) can be viewed as an
intuitive attempt to generalize the physically transparent
Equation (4.7) to the less transparent case of non-orthogonal
CFs. Hurley65 has rather elegantly justified this

generalization by the following alternative derivation. From

the molecular wavefunction

¥ =2 C.. |A;B.D ’ (4.8)
17 ij i3
he derives "occupation numbers" for CFs, in analogy to

. 75 . . \
Mulliken's "gross atomic populations" for non-orthogonal

atomic orbitals. by the definition

n.. =C.. Z Sij,kl C“l . (4.9)

He then defines the correlation-corrected molecular energy

reasonably as
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e~ ~
E=2 I H,. C.. C + Z n.. AE. . ’ (4.10)
ij k1 i1j,kl 7“ij "kl i5 ij ij

where the AEij are the same as in Equation (4.7a). It is
readily verified that Equations (4.9) and (4.10) together are
equivalent to

[~
zZ I H,. C.. C. ’ (4.11)
i k1 ij,kl "ij Tkl

mQ
"

where the matrix Hij Kl is just the one given by Moffitt'’'s
Equation (4.6). The latter has thus been deduced from the

occupation number assumption (4.9).

By contrast, Balint-Kurti and Karp1u569’76 haye argued
that, rather than introducing such an occupation number
assumption, it would be preferable to introduce appropriate
definitions of orthogonal composite functions. Specifically,
they propose that the original non-orthogonal CF's !AiB.> be
Schmidt-orthogonalized in the order of increasing AIM
corrections. In manyv cases (Hz, HF, Fz), this Orthogonalized
Moffitt (OM) procedure gives worse results for dbinding
energies69 than the ICC method. The OM procedure has been
carried out using small numbers of Gaussians to expand the

free atom MBS, and the resulting large basis superposition

wavefunctions. For instance, a (5s, 3p) Gaussian basis
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contracted minimally gives an uncorrected bond strength of
1.39 eV for F276, while a near Hartree-Fock quality (l4s, 7p)
MBS fails to predict binding, with a bond strength of -0.21
evléc. Thus, the OM results seem spuriously good due to such

basis superposition errors. We also note that the OM variant

of the AIM theory has been applied to a number of triatomic

surfac9569

In this context it should also be mentioned that Grevy
and Verhaegen77 and Lieven et al.78 have developed a
correction scheme which is similar in spirit to the AIM
method, but whose formalism and operational equations are
based on a somewhat different working hypothesis: the weights
which multiply the intraatomic correction terms AE are derived

from a Mulliken population analysis75

(which involves orbital
overlap!) of minimal-basis-set atomic orbitals. This
procedure is simpler than the AIM method and can be applied to
wavefunctions which are not even linear combinations of CFs.
However, it determines only weights of atomic configurations
and not of individual atomic states. This is most recently

described by Lieven, Breulet and Verhaegen78.

5. Correlation corrections for atomic and ionic states

Essential for the application cf all AIM schemes is a
knowledge of the atomic correction energies AE(Ai). They are

deduced from the exact atomic energies E(Ai) and the



65

calculated open-shell atomic Hartree-Fock limits E(Ai).
Fortunately, much more information is available on this
subject at present than was the case in the early days of AIM
theory.

For two-electron atomic systems (H to Ne8+), very
accurate calculations were performed by Pekeris70a to yield
unrelativistic correlation energies as well as relativistic
corrections. Near Hartree-Fock energies were given for H ,
He, Li+ and Be2+ by Froese—Fischer70b.

For atoms and many positive ions with three to ten
electrons (Li to Ne), two thorough compilations have been
prepared over a decade ago. Correlation energies have been
determined by Verhaegen and Moser73 for all states arising
from (1522522pn) configurations, in some cases corrected for
the near-degeneracy-type configuration interaction between
(lsZan) and (15225292n-2) states. Correlation energies for

all (ls‘an) and (1s‘252pn) states, as well as relativistic

corrections for all three types of configurations were
79

determined by Desclaux, Moser and Verhaegen

For higher elements, less data are available. Clement180
has given correlation corrections for the ground states of the
first 22 elements and some of their positive ions. Fraga et
al.” have given relativistic corrections to Hartree-Fock

energies for ground states of the first 102 elements and many

of their positive ions.
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Correlation and relativistic corrections for negative
ions are considerably less available because of the difficulty
in obtaining experimental data for these species. Generally,
only the singly negative ion, at most, will be stable.
Electron affinities are difficult to measure accurately, and
are normally only available for the ground states of the ions.
Hotop and Lineberger81 have given experimental electron
affinities for the first 85 elements of the the pericdic
table, including very few negative ion excited states.
Schaefer et al.82 have given less accurate theoretically
derived electron affinities for atoms B to F, including a
number of low-lying excited negative ion states. Correlation
and relativistic corrections can be extracted from these

electron affinities with the help of judicious extrapolation

of the known corrections for the neutral and positive ions.
70c

Clementi and Roetti give SCF energies for singly negative
ions from Li to I . For doubly negative ions, there are
virtuallv no experimental dataso, and extrapolation to these

or even more negative ions from the positive and neutral
species is hazardous. The establishment of a more reliable
data base for these negative ions will be a necessary
prerequisite for general future applications of the AIM theory
on a wider scale. Fortunately, CFs involving high negative
ions usually have very small coefficients in the molecular

wavefunctions.
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From the compilation of Desclaux, Moser and Verhaegen79,
it is apparent that relativistic corrections can be
substantial even for atoms in the first three rows of the
periodic system where they arise from the inner sheii only.
If it can be assumed, however, that such relativistic
corrections remained unchanged for the various atomic
configurations as they enter the molecule, then the
relativistic correction for the molecule can also be recovered
by the AIM correction method, even though only the
unrelativistic Hamiltonian is being used for the molecular
calculation. For heavier atoms, however, where relativistic
effects modify the valence shell, directly or indirectly, the
inclusion of relativistic terms in the molecular Hamiltonian
will most likely be necessary when calculating the matrix
elements ﬁij,kl’

C. The FORS-IACC Model

l. Theoretical formulation

The AIM approach can be combined with the FORS model
because of two features characteristic for FORS wavefunction:
(i) FORS MOs can be chosen as being so strongly localized that
they are almost identical with the minimal basis of the
Hartree-Fock SC¥F AQs of the free atoms; (ii) the full wvalence

space of all possible configurations that are generated from

the localized FORS MOs is identical with that spanned by the
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set of all composite functions (CFs) which can be constructed
from the localized FORS MOs.

In Reference 14b, the remarkable observation was made
that projected localized FORS MOs (PLMOs) can be chosen in
such a manner that each of them is almost identical (with an
overlap usually exceeding 0.9) to one of the free-atom SCF
AO0s, and that they can therefore be considered as a
"molecule-adapted minimal basis set of atomic orbitals"”. It
is therefore a straightforward matter to substitute these
PLMOs in place of the corresponding free-atom SCF AOs in the
formulae for atomic configurations. The modified
configuration state functions which result in this manner can
thus be chosen to be the "approximate atomic state functions"
|Xi>, [§j> from which "approximate composite functions"
|£i§j> are constructed for the AIM procedure, as discussed
in the preceding sections of this chapter. It is also evident
that the number of independent CFs which can be constructed
will be exactly the same as the number of linearly independent
configuration state functions that can be constructed from the
FORS MOs in the usual manner (e.g. in terms of SAAPs), namely
equal to the dimension of the full reaction space. This
choice of the approximate CFs for the AIM procedure has the
following unigque advantages.

FORS wavefunctions are entirely free of the constraints

inherent in previous AIM models. The PLMOs are not simple MBS
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AOs but are optimally expanded in an extended set of
quantitative basis orbitals which can be as large as desired.
The only restriction is the number of configuration generating
orbitals used to generate the full reaction space. HWithin
this limitation, the FORS wavefunction has complete
flexibility and is the best possible function. Expressed in
terms of CFs constructed from the PLMOs, FORS wavefunctions
can be considered as the ultimate stage in the development
begun by Arai and Hurley who realized that expansions in terms
of a limited number of CFs made from exact atomic states would
never do, but that deformed atoms in molecules were needed74.
{Such deformations entail adjustments in the wavefunction
which, in Moffitt’'s original model, could have been achieved
only by admixtures of higher and even continuum exact states.)
Since FORS wavefunctions result from MCSCF calculations, the
CFs constructed from FORS PLMOs must be considered as
representing those deformed atom states which are "intrinsic"
to the particular molecule (assuming a sufficiently large
extended set of quantitative basis orbitals has been used to
exclude basis set errors).

Even though the PLMOs are so very similar to the SCF AOs
of the the free atoms, they nevertheless form an orthonormal
set, and so do the composite functions sAiBj> constructed from
them. Thus, the non-orthogonality problem has been resolved

in the most natural manner. It is as if the FORS PLMOs offer
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the best of both worlds: they are optimal for the molecular
calculation and they also generate orthogonal CFs. As a
consequence the intraatomic correlation correction is achieved
by the physically straightfiorward and conceptually transparent
Equation (4.7), i.e., by simply modifying the diagonal
elements ﬁij,kl'

The price paid for these advantages is that the PLMOs
differ from the free-atom SCF AOs by more than just a scale
adjustment. They are somewhat distorted and even contain
small admixtures from neighbouring atoms. Indeed, those PLMOs
which correspond to a set of spherically degenerate free-atom
AOs (such as pr, 2py, 2pz) belong no more to a representation
of the full rotation group around that atom, but they reflect
the molecular symmetry. Thus, in a diatomic molecule, the
PLMOs corresponding to the AOs 2px and 2py of an atom differ
from each other by a rotation only, but the PLMO corresponding
to 29z on the same atom has a slightly different shape.

For the calculation of the correiation corrections, the
reasoning of Hurleyel, outlined in Section B.3 of this
chapter, is however still pvertinent, since it relies on the
approximate independence of dynamic correlation errors upon
changes in orbital size and shape. Therefore, for each state,

the exact atomic correlation correction

AE(Ai) = E(Ai)—E(Ai) p
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where E(Ai) is the Hartree-Fock limit for that state, is
used in the approach proposed here. It is apparent that this
procedure does not compensate for basis set truncation errors
in the molecule. One might conjecture that such a
compensation could be had cheaply by determining the E(Ai)
through Hartree-Fock SCF calculations in the free atom using
exactly the same extended set of quantitative basis orbitals
as is used in the molecular calculation. But such a scheme
turns out to be unreliable. It is possible, for example, that
the addition of certain basis functions will markedly lower an
atomic energy é(Ai) particularly for negative ions, while
hardly affecting the molecular energy.

The approach ocutlined will be abbreviated as FORS-IACC

(IntraAtomic Correlation Correction to the FORS model).

2. Mathematical formulation

The FORS-IACC method relies on choosing, as a basis for
the full reaction space, that set of composite functions which
are generated from the molecule-adapted minimal-basis atomic
orbitals furnished by the PLMOs (the projected localized FORS
MOs). These composite functions, (CF)V say, form an
orthonormal set and there thus exists an orthogonail
transformation between them and all possible spin-adapted

14a

antisymmetrized products, (SAAP)K say , Wwhich can be

constructed from the same PLMOs.
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However, the subspace of those SAAPs which are needed to
express a particular molecular state of a given spin
multiplicity and spatial symmetry usually has a dimension that
is smaller than the number of CFs required for expressing that
state. This is because, in general, the CFs do not belong to
irreducible representations of the appropriate space and/or
spin symmetry. The number of CFs needed to express the SAAPs
spanning the configuration space appropriate for a certain
molecular state is therefore in general larger than the number
of these SAAPs, which form the practical working basis for
evaluating matrix elements and performing numerical
computations. The transformation between the composite

functions (CF)v and the spin-adapted antisymmetrized products

(SAAP)K is therefore a rectangular matrix:

{SAAP > = T |CF,> T, . (4.12)
K v \Y VK

K=1, 2, ... M v=1l 2, ... M MO>M . (4.12a8)
The matrix T is usually sparse and its elements are simply
defined numbers. It is moreover independent of the molecular

geometry. It satisfies the orthogonality condition

(4.12b)
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but TT*#I since T-l, in general, does not exist.
The Hamiltonian matrix between the CFs, HCF say, 1is
related to that between the SAAPs, HSAAP say, by the

similarity transformation

HOARP _ ot (CF o i (4.13)

The intraatomic correlation correction is accomplished by

adding to HCF the diagonal matrix -

aESF = gaE, Syt = 8y T AEy(R)) , (4.14)
A

where the sum goes over all atoms in the molecule and AEV(A)
is the atomic correlation correction for that state of the
atom A which occurs in the composite function (CF)V.
Transforming back to the SAAP basis one obtains for the
intraatomic correlation correction the matrix

aSAAP o phaplFe - tp 7 7 aE 3 = {oESARAP; (4.15)
S S IK . :

which can be added to the FORS matrix H??ﬂl.
There are three possible cptions in using the corrected
matrix (HORAP  ApSAAP,

to determine energies and

wavefunctions. The simplest is tc find the energy correction
£

approximately from the first order perturbation expression
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- SAAP
AE = §K AEIK CI Ck p (4.16)

where CK are the expansion coefficients of the FORS
wavefunction in terms of (SAAP)K. In many cases, this
estimate is surprisingly accurate. Nonetheless, a better way
is to solve the eigenvalue problem for the corrected matrix.
This procedure yields not only improved energies, but also an
improved wavefunction. These two procedures have been
implemented into a computer program named IACC and a detailed
description of which is given in next sections. Finally, it

is possible to incorporate the corrected Hamiltonian matrix

(uSAAP | \pSAAP, 4+, the MCSCF iteration procedure which

yvields the FORS wavefunction. This is possible since the
correction matrix AESAAP depends neither on the MO expansion

coefficients nor on the MC-CI expansion coefficients. 1In

implementing such a procedure. it will be necessary. however.

to see to it that the MOs remain projectively localized after

each orbital improvement step.

3. The transformation from molecular SAAPs to composite
functions

The mathematical manipulations required to determine the
transformation matrix T of Equation {4.12) represent the only
non-trivial aspect of the FORS-IACC implementation. This task

is naturally divided into two stages. The first stage
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consists of expressing molecular SAAPs in terms of atomic
antisymmetrized products. The second stage is to find
expressions relating these atomic antisymmetrized products to
atomic states that are generated from real atomic orbitals,

such as are used in molecular calculations.

(a)

The first stage, namely the expression of molecular SAAPs
in terms of atomic antisymmetrized products is accomplished in
two steps. First, one must regroup the spatial atom-localized
orbitals (PLMOs) in a given molecular SAAP in such a manner
that all those orbitals which belong to one atom are occupied
by electrons in sequential order. This is achieved by an
appropriate permutation of electrons. Next, the spin function
© in the SAAP, as changed by this permutation, must be
expanded in terms of products of spin functions from the
various atoms. After this has been done. the total
antisymmetrizer is decomposed into a product of atomic
antisymmetrizers and a coset antisymmetrizer. Thereby, the
molecular SAAP appears as an antisymmetrized product of atomic

SAAPs.

As a simple example consider a covalent VB-type SAAP that

£

can occur in i2’

= 2,2
¥ = (l/Z)A{kAk ZASBGOOOGO} ’ (

w
b
~J
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where kA and kB are ls orbitals on atoms A and B respectively;

Zp is a sz orbital on A and sé is a 2s orbital on B;

o, = (zB-8x) /72 ;
a=(n Y2y (-1)Fp ; (4.18)
P

and the factor 1/2 normalizes ¥ due to two doubly occupied
orbitals.

Let (345) be the cyclic permutation which changes
electron 3 into 4, 4 into 5 and 5 into 3. Since it is an even

permutation, one has A(345) = A and consequently

e
]

(1/2)A(345){kAkAkBszAsBO°®09°3

= (1/2)A{kA(l)kA(2)kB(4)kB(5)zA(3)SB(6)O°(12)6°(45)0°(36)}

= (1/2)A{k k,z,kpkgs, (0 x0 _B-0, B0 a)/I21

) 2 2 o2 2

= (1/2)A0(k;z,0 &) (kis50_B) - (kiz,@ B) (kg550 ) 3/{Z
. * 2 (A ks @ B)

= (1/2)A7 (A k3z,0 o) (Ak>s 0 B

2 2
(AAKAZAGOB)(ABKBSBQOa) . (4.19)

Here,
/2 (.1h)FP p

A, = (31)
A P
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is the antisymmetrizer for electrons 1, 2 and 3; AB is the
corresponding antisymmetrizer for electrons 4, 5 and 6 and A*

is the coset antisymmetrizer defined by

A" = (3131/61)1/2 g* (-1)Fp
P

where the sum Z* goes over a set of 20 coset generating
permutations which are defined as follows. If SA is the
symmetric group of all permutations between electrons 1, 2 and
3 and SB is the group of all permutations between electrons 4,
5 and 6, then the group of permutations between all six

electrons has the left coset decomposition

s =5 "®S, @5y (4.20)
where S* is a coliection of (B!1/3131) = 20 (non-unigue)
permutations called coset generators.

in the second stage, the four atomic antisymmetrized
products of molecule-adapted atomic orbitals occurring in
Equation (4.19), must be expressa2d in terms of atomic state
functions. To this end, the molecule-adapted AQs are
temporarily replaced by free-atom ACs. The case at hand is a
simple one in that each atomic antisymmetrized product is

already an atomic state, namely:
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2 ) 2
A, (kZzpoBx) = |Az 2P(0,1/2)) , (4.21a)
A, (k2 ) = |Az 2P(0,-1/2)> (4.21b)
A Aon‘-Bﬁ - l 4 14 [ 4 .
2 ) 2
AB(kBsBmBu) = |{Bs “S(0,1/2)> ’ (4.21c)
A_(k%s_aBB) = I|Bs 2S(0,-1/2)> (4.21d)
B{Kp®g ’ ' .

where the atomic state symbols are jatom snpm zs+1L(Ml,MsD.
The molecule-adapted AOs, i.e. the PLMOs, are now

resubstituted for kA' kB' Zps Sgs SO that Equations (4.21)

represent molecule-adapted atomic states. From these, the

composite functions (CFs) are then directly defined as:

1 2p(0,1/2)/%8(0,-1/2)>

= a%|az 2P(0,1/2)>|Bs %S(0,-1/2) ; (4.22a)
1%P(0,-1/2)/%5(0,1/2)>

= a%1Aaz %P(0,-1/2)>1Bs 2S(0,1/2)> ) (4.22b)

By wvirtue of Eguations (4.19) and (4.22a,b), the
molecular SAAP of Equation (4.17) can then be expressed in

terms 0f CFs as follows:
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¥ = £1%P(0,1/2)/2%5(0,-1/2)>

- 1%p(0,-1/2)7%8(0,2/2)>1/ 13 , (4.23)

(b)

In general, the procedure is more complex. The most
practical approach is to decompose the part of the spin factor
which corresponds to the singly occupied orbitals into a sum
of simple products of the form (nlnan...) where each n is
either o« or B. After appropriate permutations, a molecular
SAAP Y can then be expressed as

= * B
¥=z C " A {Qv

023 , (4.24)
v M
vu

where A* is an appropriate coset antisymmetrizer and Q%,

Qﬁ are antisvmmetrized pyroducts on A and B respectively.

These atomic antisymmetrized products can then be expressed in
terms of state wavefunctions iAj> and in> of the atoms and

their ions, i.e.

¢® - £ |a.> D. ,
v : j jv
j
¢ -z i8> D (4.25)
" z i By K . .

Combining the Expansions {(4.24) and {(4£.25) one obtains then
g

a
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® = £ |A.B)> T. ,  with T = pcot , (4.26)
ik ik jk

where the functions

1A B> = a* (A B, 3 (4.27)
are just the composite functions (CFs).

For the case that the spatial orbitals are limited to a
set of four valence orbitals of the type s, Pyr py, P, (in
addition to a closed core of doubly occupied inner orbitals),
the atomic states arise from the configurations snpm with
n=29,1,2 and m = 1-6. It was found most convenient to
prepare tables for all possible cases and they are listed as
Table 4.3. This table consists of 54 subtables for the
various configurations whose ordering is obtained as follows:
reverse the order of the set of occupation numbers for (xyzs)
listed at the head of each subtable, and interpret the
resulting set of digits as a ternary or decimal number. The
subtables are then arranged in the order of increasing values
of these numbers.

As an example for the use of these tables, consider the
column BxP in the subtable corresponding to the occupation

(xyzs) = (1211). The data given in this column imply that



81

AL(yo) (¥8) (xB) (za) (8R)Y = - |2D(17,-1/2)>/42

+ 121", -1/2 /46 + 1*p1v,-1720/03

Similarly, the column af in the subtable for the occupation

(xyzs) = (2121) implies that

Af(xa) (xB)(zax) (zB) (yax) (sB) 3

= g1ipcrv.0y> + 13paat, o012

The following conventions for the construction of SAAPs are

apparent from these examples:

(i Under the antisymmetrizer the doubly occupied orbitals
precede the singly occupied orbitals;

(ii) The column list only the spin functions for the singly
occupied orbitals - and the order of the individual spin

factors corresponds to that of the singly occupied

orbitals;

[ )
ct
3
1]

1
L |

mn
o)

=

fn

(iii) The =ingly occupied orbitals an factors must
t

en in the order in which thevy occur in the
occupation list at the head of the table, i.e. x,¥,2,58.

Furthermore, the atomic state functions |L,Ml’> and

iL,M1"> occurring in these tables are defined as
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;L,Ml'>={|L,Ml>+1L,-M1>*(—1>“1}/I§

IL,M, "> ={|L,M - L, -M >*(-1)M13/1772 (4.28)

. s 25+1 25+1
where M; is assumed to be positive and | L,Ml>, ! L,-M

l>

are the conventional complex atomic states in the Condon-
Shortley phase convention. The functions |L,M1'> and |L,M1">
are eigenfunctions of Sz, but not of SZ. However they are
real functions and, for this reason, the listed transformation
matrices are all real. In some cases, the functions |L,M, ‘>

1
and ;L,M1“> have been multiplied by an additional factor of

(-1).

The transformations given in Table 4.3 are readily
cbtained by inverting the explicit expressions of the atomic
states in terms of the real atomic valence orbitals s, Py - py,
P, These expressions have been derived for the free
spherically symmetric atomsBB.

It ought to be noted that, in the present context, the

free-atom expansions of Table 4.3 are of course applied to

PLMOs which are not spherically symmetric.
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Table 4.3. Expansions of antisymmetrized products of real
atomic spin orbitals in terms of atomic states of
the appropriate configurations for the minimal
basis set of the 2s, 2px, 2py and sz shell

Occupation : (x y 2 s) = (0 0 0 0) ; Configuration : sopo

Atomic States Spin Factors

25+1
L(Ml, Ms)
1

SC 0, 0 ) 1.000000
. _ . ] 01

Occupation : (x y z s) = (1 0 0 0) ; Configuration : s p
Atomic States Spin Factors
25+1

L(Ml, M) o 8

2p(1‘, 1/2)  1.000000  0.000000

2?(1',—1/2) 0.000000 1.000000

Occupation : (x y 2 s) = (2 0 0 0) ; Configuration : sop2
Atomic States Spin Factors
2S+1

L(Ml, MS)

n¢2', 0 )+ -0.707107

Do, 0 0.408248

15¢ 0, 0 ) 0.577350



Table 4.3 continued

Occupation

Atomic States

25+1

L(Ml, MS)

2p(1v, 1/2)
2p(1",-1/2)

(xy z 8) =

Configuration

: s p

Qccupation : (x g

Atomic States
25+1

LM, M)
Ine2v, o )
3p¢ 0, 1 )
.

3p¢ 0,-1 )
3pC 0, 0 )

Configuration

Be
0.000000
0.000000
1.000000

0.000000

0
: s p

B
-0.707107
0.000000
0.000000

0.707107

Occupation : (x

Atomic States

25+1

L(M.. M)
1 s

2pear,

1/2)
2p(1*, 1/2)

5
“D(1’,-1/2)

(0100 ;

Spin Factors

x B
1.000000 0.000000
0.000000 1.000000
z s) = (110 0) ;
Spin Factors

of V2 8
0.707107 0.000000
0.000000 1.000000
0.000000 0.000000
0.707107 0.000000
zZ s) = (2 0 0) ;
Spin Factors

x 8
0.707107 0.000000
0.707107 0.000000
0.000000 0.707107
0.0C0C0C 0.7C7107



85

Table 4.3 continued

Occupation : (xy 2z 8) = (0 2 0 0) ; Configuration : sop2
Atomic States Spin Factors

285+1
L(Ml, MS)
1

D(2°, 0 0.707107
b o, 0o 0.408248
s 0, 0 0.577350

Occupation : (x y z s) = (1 2 0 0) ; Configuration : s°p>

Atomic States Spin Factors

25+1
LM, M) o 8
2p(1, 1/2) 0.707107 0.000000
2p(17, 1/2) 0.707107 0.000000
2h(1v,-1/2) 0.000000 0.707107
2

P(l1",-1/2} 0.000000 0.707107

- - —— . —— — - —— —————— —— - ———— ———_—_—— — —— " - - - —- = - - — - —— - -
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Occupation : (xy z 8) = (2 2 0 0) ;

Atomic States
2S+1

LMy, M)
¢ 0, 0
sc 0, 0

’

Spin Factors

-0.816497

0.577350

Configuration

: 5 p

- - ——— ————— — o —— ——— i — i — " - —— T tmn G —— A . T - W - - = " —— . —— - we

Occupation : (x y z s) = (0 0 1 0)

Atomic States

2S5+1
L(Ml' Ms)
2P( 0, 1/2)

2p( 0,-1/2)

.
r

Spin Factors

[*3
1.000000

0.000000

B
0.000000

1.000000

Configuration

- — - - — - — i~ —— - — o ———————— G -~ ——— - - — - ———— o - ———— -

Occupation : (X
Atomic States

25+1
L(Ml, MS)

pair, o
3paav, 1 )
3p1v,-1 )
3pc1v, 0 )

zs) =(1010) ;

Spin Factors

oB
0.707107
0.000000
0.000000

0.707107

X
0.000000
1.000000
0.000000

0.000000

Configuration

BB
0.000000
0.000000
1.000000

0.000000

0 2
: s p

o
-0.707107
0.000000
0.000000

0.707107
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Occupation

Atomic States
25+1

L(Ml, Ms)
2p(2*, 1/2)

2p¢ 0, 1/2)

2p(2v,-1/2)

2p( 0,-1/2)

(xyzs)y=+(2010) ;

Spin Factors

o
0.707107
0.707107
0.000000

0.000000

8
0.000000
0.000000
0.707107

0.707107

Configuration

: S p

Occupation : (x y

Atomic States

2S+1
L(Ml, MS)

piv, o
a1, 1 )
3p(17,-1 )
Sp1r, 0 )

Zs) = (011 Q) ;

Spin Factors

oB
0.707107
0.000000
0.000000

0.707107

oo

0.000000
1.000000
0.00C000

0.000000

BB
0.000000

0.0G60000
1.000000

0.000000

Bo
-0.707107
0.000000
0.000000

0.707107
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Occupation

Atomic States

25+1

L(M

1° MS)

2p(27, 1/2)

2p(2',-1/2)

2p¢

2p¢

45

45

4S(

45

0, 1/72)
0,-1/2)
0, 1/2)
0,-1/2)
0, 3/2)

0,-372)

Atomic States

25+1

L(M

1, MS)

‘D27, 1/2)

2D(2',-1/2)

2p¢

2p(

4S(

45

4
"5S¢

4S(

0, 1/2)
0,-1/2)
0, 1/2)
0,-1/2)
0, 3/2)

0,-3/2)

(xyzs)=4(¢(111020) ;

Spin Factors

xBoe
0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Bowx
-0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Spin Factors

0.8
0.000000
0.000000
0.8164397
0.000000
0.577350
0.0600000
0.000000

0.000000

BBa
0.000000
0.000000
0.000000

-0.816497
0.000000
0.577350
0.000000

0.000000

Configuration

BB
0.000000
0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

0LoLOL
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.000000

0.000000

BB
0.000000
-0.707107
0.000000
0.408248
0.000000
0.5773590
0.000000

0.000000

gesp
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

1.000000
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Occupation

Atomic States

2oy, M)
pciv, o
3p(1r, 1
3p(17,-1 )
3pc1, 0

(xyzs)=+((21120 ;

Spin Factors

op
0.707107
0.000000
0.000000

0.707107

oo
0.000000
1.C00000
0.000000

0.000000

Configuration :

BB
0.000000
0.000000
1.000000

0.000000

Bo
-0.707107
0.000000
0.000000

0.707107

Occupation : (x vy 2z s) = (021 0) ;

Atomic States
28+1
LM, M)
2p(2", 1/2)
2p( 0, 1/2)
2p(2",-1/2)

2
“P( 0,-1/2)

14

Spin Factors

o
-0.707107
0.707107
0.000000

0.000000

B
0.000000

0.000000
-0.707107

0.707107

Occupation : (x y 2 s) = (1 2 1 0)

Atomic States

25+1L(M1, M)
oair, o )
paav, 1 )
3p(1t,-1 )
3p(1", 0 )

.
r

Spin Factors

op
0.707107
0.000000
0.000000
0.707107

oKX
0.000000
1.000000
0.000000
0.000000

Be
0.000000

0.000000
1.000000
0.000000

Box
-0.707107
0.000000
0.000000
0.707107
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Table 4.3 continued

Occupation : (xy z s) = (2 21 0) ; Configuration : sop5

Atomic States Spin Factors

2S+1
L(M;, M) o B
2P( 0, 1/2) 1.000000 0.000000
2P( 0,-1/2) 0.000000 1.000000

Qccupation : (x y 2z s) = (0 0 2 0) ; Configuration : sop2
Atomic States Spin Factors
25+1

L(Ml, Ms)

lD( 0, 0 ) -0.816497

s¢ 0, 0 0.577350

. _ . . 0 3

Occupation : (x y z s) = (1 0 2 0) ; Configuration : s p
Atomic States Spin Factors
25+1.

u(Ml, MS) o B

2p(1v, 1/2)  -0.707107  0.000000

2p(1', 1/2) 0.707107  0.000000

2D(l",-l/2) 0.000000 -0.707107

2

P(1’,-1/2) 0.000000 0.707107
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Occupation :

tomic States
25+1

LM, M)
Iz, 0
bt 0, 0 )
Isc 0, 0 )

(X v z 8) =

Configuration

Occupation :

Atomic States

2S+1

L(Ml, MS)

2p(1c, 1/2)
2p(1", 1/2)
2D(1’,-1/2)

2p(1*,-1/2)

Configuration

. o o o - - - ————————— - ————————— - - 4> - - ———— —_ o m_ > " . ——— " — - o

Occupation :

Atomic States

2S+1

L(Ml’ MS)

lD(2”, 0

3pc 0, 1)

(2 020y ;
Spin Factors
0.707107
0.408248
0.577350
(xy z2s) =(0120)
Spin Factors
o B
-0.707107 0.000000
0.707107 0.000000
0.000000 -C.707107
0.000000 0.707107
zZ s) = (112 0) ;
Spin Factors
«B (173
0.707107 0.000000
0.000000 1.000000
0.000000 0.000000
0.707107 0.000000

Configuration

8s
0.000000
0.00C000
1.000000
0.000000

Bot
-0.707107
0.000000
0.000000
0.707107

> - - - ———————————— —————————————_———— ———— ——— . - ———— G ———— - —— - ——
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Table 4.3 continued

Occupation : (x y z s) = (2 1 2 0) ; Configuration : sop5

Atomic States Spin Factors

28+1
L(Ml, MS) o B
2p(1v, 1/2) 1.000000  0.000000
2P(l",-—l/Z) 0.000000 1.000000

Occupation : (x y z s) = (0 2 2 0) ; Configuration : sop

Atomic States Spin Factors

25+1
L(Ml. Ms)

Ioc2', 0 ) -0.707107

inc o, 0 0.408248

1sc 0, 0 0.577350
Occupation : (x y z s) = (1 2 2 0) ; Configuration : sop5
Atomic States Spin Factors
25+ M., ML) " 8

L S
2p(17, 1/2) 1.000000 0.000000

2?(1’,-1/2) 0.000000 1.000000
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Occupation :
Atomic States
25+1L(M

1s( 0, o

1’ Ms)

(X yzs) =4(22 2 0) ;

Spin Factors

1.000000

Configuration

Occupation

Atomic States

25+1
L(Ml, Ms)

2

2S¢ 0,-1/2)

S 0, 1/2)

zs) = (000 1) ;

Spin Factors

o
1.000000

0.000000

B
0.000000

1.000000

Configuration

Occupation :

Atomic States

25+1
L(Ml, Ms)

lp¢iv, o
3pe1, 1
3p(1,-1/2)
3p(17, o

z s) = (1 0 0 1) ;

Spin Factors

op
0.707107
0.000000
0.000000

0.707107

o
0.000000
1.000000
0.000000

0.000000

BB
0.000000
0.000000
1.000000

0.000000

-0.707107
0.000000
0.000000

0.707107



Table 4.3 continued

94

Occupation

Atomic States
2S+1

L(Ml’ Ms)
2D(2', 1/2)

2D( o, 1/2)
2s5( 0, 1/2)
2p(2',-1/2)
2D( 0,-1/2)

23( 0,-1/2)

(xyzs)=(2001) ;

Spin Factors

o
0.707107
-0.408248
0.577350
0.000000
0.000000

0.000000

g
0.000000
0.000000
0.000000
0.707107

-0.408248

0.577350

Occupation : (x ¥y

Atomic States
25+1

LM, M)
e, 0
Sp1v, 1 )
3p(1v,-1
3pc1", 0

zZzs) =(0101) ;

Spin Factors

of
0.707107
0.000000
0.000000

0.707107

o 0 3
¢.000000
1.000000
0.000000

0.000000

Configuration :

BB
0.000000

0.000000
1.000000

0.000000

B
-0.707107
0.000000
0.c00000

6.707107
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Occupation : (x y 2 s) = (110 1) ;

Atomic States

2S+1
L(Ml, Ms)

2p(2", 1/2)
2p(2",-1/2)
2p( 0, 1/2)
2p( 0,-1/2)
4pa1v, 1/2)
Yp1v,-1/2)
*pc1v, 3/2)

4p(1v,-3/2)

Atomic States
ZS+1L(M1, M)
s

’pe2", 1/2)
2D(Z“,-—l/Z)
2p( 0, 1/2)

2p( 0,-1/2}

o1, /)
&p(1v,-1/2)
deiiv, 3/2)

4pein,-3/2)

Spin Factors

xBo
0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
0.000000
0.000000

Boot
-0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
0.000000
0.000000

Spin Factors

L)
0.000000
0.000000
0.816497
0.000000
0.577350
0.000000
0.000000

§.0006000

BB
¢.000000

o
o

0000¢

()
Q

00

=]
(]

v
-0.816497
0.000000
0.577350
0.0000600

0.000000

BB
6.000000
0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

000 12 3
0.000000
0.000000
0.000000
0.00900¢0
0.000000
0.000000

1.000000

Bap
0.000000
-0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

888
0.000000

0.000000
0.000000
¢.000000
0.000000
0.000000
0.000000

1.0000¢0



Table 4.3 continued
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Occupation :

Atomic States
25+1

(X y z s) =

(2101 ;

Spin Factors

Bou

-0.500000
-0.500000

0.000000
0.000000
0.000000
0.000000
0.500000
¢.500000

Configuration

o
0.000000
0.000000
0.707107
0.707107
0.000000
0.000000
0.000000
0.000000

s1p3

BB
0.000000
0.000000
0.000000
0.000000
0.707107
0.707107
0.000000
0.000000

———— - - ———— - ——————— ——— — i — ———— —— - ——————— " ———— -~ - - N A - -

LM, M) «p
b1, 0 ) 0.500000
paiv, o 0.500000
3p(1*, 1 ) 0.000000
3p(1*, 1 ) 0.000000
3pc17,-1 ) 0.000000
3p(1",-1 ) 0.000000
3p(1', 0 ) 0.500000
3paan, 0 ) 0.500000

Occupation : (x y 2z s) =

Atomic States

25+1
L(Ml, MS)

2p(2, 1/2)

2

DC 0. 1/2)

25¢ 0, 1/2)
2D(2,-1/2)
2D( 0,-1/2)

25( 0,-1/2)

(020 1) ;

Spin Factors

o
-0.707107
-0.408248

0.577350
0.000000
0.000000

0.0C60000

8
0.000000
0.000000

0.000000

-0.707107
-0.408248

0.577350

s pP



Table 4.3 continued
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Occupation

: (xyzs)=1(1201) ;

Atomic States

25+1

LM, ,

b1, o
lpaa, o
3pa1, 1
3pe17, 1
3p(1,-1
3pa17,-1
3pa1n, o

3p(17, o

M;)

Spin Factors

ag
0.500000
0.500000
0.060000
0.000000
0.000000
0.000000
0.500000
0.500000

Bx
-0.500000
-0.500000

0.000000
0.000000
0.000000
0.000000
0.500000
0.500000

Configuration :

[0 249
0.000000
0.000000
0.707107
0.707107
0.000000
0.000000
0.000000
0.000000

1.3
5P

BB
0.000000
0.000000
0.000000
0.000000
0.707107
0.707107
0.000000
0.000000

- —— - . — — . . - — — —— . . - G = . - ———— — - — 0 —— A —— - =" e - -
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- ——— ——— G- " D n - - —— - ———— ————— - ———— - - — > - - — " - —— = - —

Occupation :

Atomic States

25+1
L(Mll
2

D( O,

M_)
1/2)
25¢ 0, 1/2)
2p( 0,-1/2)

28( 0,-1/2)

(X y2zs) =

(2201 ;

Spin Factors

o
-0.816497
0.577350
0.000000

0.000000

B
0.000000

0.000000

-0.816497

0.577350

Configuration

Occupation : (x

Atomic States

25+1
L(Ml,

M)
1p¢ 0, 0

2p( o,
2

1/2)
P 0,-1/2)

-

“PC 0, 0

Z 8) =

(001 1) ;

Spin Factors

B
0.707107
0.000000
0.000000

0.707107

oo
0.000000
1.000000
0.000000

0.000000

Configuration

BB
0.000000

0.000000
1.000000

0.000000

: 5P

Bo
-0.707107
0.000000
0.000000

0.707107



Table 4.3 continued
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T I ——— . - —— - —— A W - - — —. A e T - —— ———— —— ——— —— - — T A A - - -

Occupation : (x vy z s) = (1 01 1) ;

Atomic States
B*lnm,, M)
Zpc1r, 1/2)
2p(1’,-1/2)
2p(1*, 1/2)
2p(1*,-1/2)
4p(1, 1/2)
p(1v,-1/2)
Yp1v, 3/2)
4p(1v,-3/2)

Atomic States

25+1L(M

LM
“D(17, 1/2)
2p(17,-1/2)
Zp(1", 1/2)
2p(1",-1/2)
%1, 1/2)
4p(iv,-172)
‘pav, 3/2)

4p(1n,-3/2)

4

Spin Factors

oBot
0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
06.000000

0.000000

Boow

-0.707107

0.000000

-0.408248

0.000000
0.577350
0.0000090
0.000000

0.000000

Spin Factors

oo
0.000000
0.000000
0.816497
0.000000
0.577350
6.000000
0.000000
0.000000

BBo
0.000000
0.000000
0.000000

-0.816497

0.000000
0.577350
0.000000
0.000000

Configuration

BB
0.000000
0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

[> 2o s 0
0.000000
0.000000
0.000000
0.000000
0.000000
0.06C0000
1.000000
6.000000

BaB
0.000000
-0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

Bee
0.000000

0.000000
0.000000
0.000000
0.000000
0.060000
0.000000

1.000000

- = — ———— . — — — —— — — T —— - - A ——— - —— - —— W T W - ———————— —— - — - ——
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Table 4.3 continued

Occupation : (xy z s) = (201 1) ;

r

Atomic States
25+1

Spin Factors

L(Ml, Ms) of Bo
'bi2*, o 0.500000 -0.500000
lp¢ 0, 0 0.500000 -0.500000
3pc2v, 1 0.000000  0.000000
3p( 0, 1 0.000000  0.000000
3p(2v,-1 0.000000  0.000000
3p( 0,-1 0.000000  ©0.000000
3pc2~, o 0.500000  0.500000
3p¢ 0, 0 0.500000  0.500000

Configuration

oo
0.000000
0.000000
0.707107
0.707107
0.000000
0.000000
0.000000
0.000000

slp

Be
0.000000
0.000000
0.000000
0.000000
0.707107
0.707107
0.000000
0.000000



Table 4.3 continued
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Occupation : (xyzs) = (0111 ;

Atomic States
25+1
L(MI, MS)
2 [1}
D(1", 1/2)

D(1",-1/2)

NN

P(1l’, 1/2)

P(1',-1/2)
b1, 3/2)

p(17,-3/2)

Atomic States
25+1
L(Ml, MS)

2p(it, 1/2)

, 1/2)
4p(17,-1/2)
%p1r, 3/2)

4P(l’,—3/2)

4

Spin Factors

oo
0.707107
0.000000

-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Boo
-0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Spin Factors

oo B
0.000300

.0GCG00

()

O

.81564¢97
0.0000C0
0.577350
0.000000
0.000000

0.000000

6.000G00

(@]
(&)
(]
(&)
(]
(o]
(]

«
o
o
(@]
O
«©
(&)

~0.

o
[

649

~

0.000000
0.577350
0.000000

0.0660300

aBg
0.000000
0.707107
0.000000
0.408248
0.000000
0.577350
0.000000
0.000000

0.06060000

[eb]
L]

[e]
(&}
(o]
<
<O
(@]

N
Y

o
(&)
(]
Q
(&)
(&)

0.0C0CCO
0.000000
0.000000
1.000000

¢.06060060

Configuration : s p

Baf
0.000000
-0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

BeBe
¢.000000

(]
o
(=]
(&)
O
Q
(@]

<«
(&)
o
o
(&=
«Q
(e}

.

co¢Co

Q

(o]

0.000000
0.000000
0.000000

1.00G6000



Table 4.3 continued
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Occupation :

Atomic States

ZS«H.L(M

1° Ms
o2, o

Inc o0, o

3p(27, 1
3p(27,-1
3p(27, 0

3pc 0, 1

3s¢ 0, 1

3D 0,-1

35( 0,-1

3pC 0, 0

35( 0, 0

3¢ ¢, 2

5S( 0,-2

5s¢ 0, 1

Ss( 0,-1

5S( 0, 0

(x yzs)=+«(1111) ;

)

)

)

)

Spin Factors

xBop
0.500000
-0.288675
0.000000
0.600000
0.500000
0.000000
0.000000
0.000000
0.000000
-0.288675
0.408248

0.0000¢C0

0.408248

xBBx
-0.500000
-0.288675
0.000000
0.000000
0.500000
0.000000
0.000000
0.000000
0.000000
0.288675
-0.408248
0.00000C0
0.00000¢0
0.000000
0.000000

0.408248

Bowf
-0.500000
-0.288675

0.000000
0.000000
-0.500000
0.000000
0.000000
0.000000
0.000000
-0.288675
0.408248
0.000000C
¢.000000
0.000000
0.000000

0.408248

Configuration : sp

BxBx
0.500000
-0.288675
0.000000
0.000000
-0.500000
0.000000
0.000000
0.000000
0.000000
0.288675
-0.408248
0.000000
0.000000
0.000000
£.000000

0.408248



Table 4.3 continued

Atomic States Spin Factors

25+1
L(Hl, Ms) o8

B Boex oo Bowoox
Iptze, o ) 0.000000 0.000000 0.000000 0.000000
o, 0 0.577350 0.577350 0.000000 0.000000
3p2, 1 ) 0.000000 0.000000 0.707107 -0.707107
3p(2'.-1 0.000000 0.000000 0.000000 0.000000
3p27, 0 ) 0.000000 0.000000 0.000000 0.000000
3pc o, 1 ) 0.000000 0.000000 -0.408248 -0.408248
3s¢ 0, 1 ) 0.000000 0.000000 -0.288675 ~0.288675
3D 0,-1 ) 0.000000 0.000000 0.000000 0.000000
3s¢ 0,-1 ) 0.000000 0.000000 0.000000 0.000000
3DC 6, 0 ) 0.577356 -0.577350 0.000000 0.000000
35¢ 0, 0 0.408248 -0.408248 0.000000 0.000000
5s( 0, 2 ) 0.000000 0.000000 0.000000 0.000000
5s( ¢,-2 ) 0.000000 0.000000 0.000000 0.000000
°s¢ e, 1 ) 0.000000 0.000000 0.500000 0.500000
SS( 0,-1 0.000000 0.000000 0,000000 0.000000
°s( 0, 0 ) 0.408248 0.408248 0.0000C0 0.000000
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Table 4.3 continued

——————— - AN S A S ) ot S h B o i e - — A - — S b M S e W e - - -

Atomic States Spin Factors

25*lnm, M) *BBB BxB8 ooxxB B
1p2, 0 0.000000 0.000000 0.000000 0.000000
pc 0, 0 0.000000 0.000000 0.000000 0.000000
3p(z7, 1 ) 0.000000 0.000000 0.000000 0.000000
3pzr.-1 ) 0.707107 -0.707107 0.000000 0.000000
3p(2, 0 0.000000 0.000000 0.000000 0.000000
3pc oo, 1 0.000000 0.000000 0.000000 0.816497
35 0, 1 0.000000 0.000000 0.866025 -0.288675
3pC 0,-1 0.408248 0.408248 0.000000  0.000000
3s¢ 0,-1 0.288675 0.288675 0.000000 0.000000
3pC 0, 0 0.000000 0.000000 0.000000 0.000000
3s¢ 0, 0 0.000000 0.000000 0.000000 0.000000
3s( 0, 2 ) 0.000000 0.000000 0.000000 0.000000
°S( 0,-2 ) 0.000000 .000000 0.000000 0.000000
5S¢ 0, 1 ) 0.000000 0.000000 0.500000 0.500000
53¢ 0,-1 ) 0.500000 0.500000 0.000000 0.000000
5S( 0, 0 ) 0.000000 0.000000 0.000000 0.000000
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Table 4.3 continued
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Atomic States Spin Factors

Sy, My 8BS LE s BEBB
lD(2', o ) 0.000000 0.000000 0.000000 0.000000
1D( ¢, 0 ) 0.000000 0.000000 0.000000 0.000000
3D(2', 1 ) 0.000€00 0.000000 0.0000090 0.000000
3D(2’,-l ) 0.000000 0.000000 0.000000 0.000000
3D(2', g 0.000000 0.000000 0.000000 0.000000
3D( 0, 1 ) 0.000000 0.000000 0.000000 0.000000
3S( 0, 1 0.000000 0.000000 0.000000 0.000000
3D( 0,-1 ) -0.816497 0.000000 0.000000 0.000000
3 0.-1 ) 0.288675 -0.866025 0.000000 0.000000
3D( o, 0 ) 0.000000 0.000000 0.000000 0.000000
3S( 0, 0 ) 0.000000 0.0000600 0.000000 0.000000
5S( 0, 2 ) 0.000000 0.000000 1.000000 0.000000
5S( 0,-2 ! 0.000000 0.000000 0.000000 1.000000
SS( o, 1 0,000000 0.000000 0.000000 0.000000
5S‘ 2,-1 ) 0.500000 0.500000 0.000000 0.000000
SS( 0, 0 0.000000 ¢.000009 0.000000 ¢.000000



Table 4.3 continued
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Occupation : (xy 2z s) = (211 1) ;

Atomic States
B, My
2p(1*, 1/2)
2D(1",-1/2)
%P1, 1/2)
2p(17,-1/2)
fp(1r, 1/2)
p(1,-1/2)
Ypaiv, 3/2)

4p(17,-3/2)

Atomic States
Sy, M)

2pe1v, 1/2)

2p(1",-1/2)
P(17, 1/2)
P(1',-1/2)
P(1', 1/2)
*P(17,-1/2)

P(1", 3/22

Spin Factors

B
0.707107
0.000000

-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Boo
-0.707107
0.000000
~0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Spin Factors

oo
0.000000
0.000000
0.816497
0.000000
0.577350
0.000000
0.00000¢C

0.000000

BBa
0.000000
0.000000
0.000000

-0.816497
0.000000
0.577350
0.000000C

0.000000

Configuration

L 2-13)
0.000000
0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

0.0 £0 9
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1.000000

0.000000

1
: 5P

Bap
0.000000
-0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

ges
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
¢.000000

1.000000



Table 4.3 continued
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Occupation : (xy z s) = (021 1) ;

Atomic States
2S5+1

LMy, M)
bz, o
lp¢ 0, 0
3p2v, 1
3p¢ 0, 1
3pe2v,-1
3P 0,-1 )
*pezt, 0
3¢ 0, 0

r

Spin Factors

B
-0.500000
0.500000
0.000000
0.000000
0.000000
9.000000
-0.500000

0.500000

B
0.500000
-0.500000
0.000000
0.000000
0.000000
0.000000
-0.500000

0.500000

Configuration

¢80 3
0.000000
0.000000
-0.707107
0.707107
0.000000
0.000000
0.000000

6.000000

: s°p

BB
0.000000
0.000000
0.000000
0.000000

-0.707107
0.707107
0.000000
0.000000

- —— - - —— - o — - ———— —— —_—— — — - - — v~ —— - —— - — - ——— T ——— " - ——
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Occupation :

Atomic States

2S5+1

L(Hl, Ms)

2pa1t, 1/2)
2p(1’,-1/2)
2p1v, 1/2)
Zp(1",-1/2)
4p(1+, 1/2)
Yp1v.-1/2)
*pe1v, 3/2)

p(1v,-3/2)

Atomic States

25+1
L(Ml, Ms)

4P(l", 1/2)

NN

P(1",-1/2)

P(i", 3/2)

S

P(1",-3/2)

(X y 2 s) =

(1211 ;

Spin Factors

B
0.707107
0.000000

-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Bowox
-0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Spin Factors

oo

G.C0060600

(e
[e=]
(@]

¢o0¢

0

0
=t

.816497
C.0000090
0.577350
0.000000
0.000600

0.00000C

BBo
0.000000
£.0000090

O_000000

- e W W e

-0.816497
0.000000
0.577350
0.000000

0.008000

Configuration

xgB
0.000000
0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

oo

0.0060000

e WV www v

C.0200000
0.000000
0.000000
1.000000

0.C00C00

1
: s°p

BB
0.000000
-0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

ees
0.0060000

c.000000

0._000000

e W W W W w

€.000C00C
0.000000
0.000000
0.006000

1.00000C0



Table 4.3 continued
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Occupation : (x y z 8) = (2 21 1) ;

Atomic States
2S5+1

LM, M)
¢ 0, 0 )
3pc 0, 1 )

’

Spin Factors

op
0.707107
0.000000
0.000000

0.707107

(0503
0.000000
1.000000
0.000000

0.000000

Configuration

8e
0.000000
0.000000
1.000000

0.000000

: s p

B
-0.707107
0.000000
0.000000

0.707107

o e e e m . = o . - - e . . e e G A - - — - Gn . ———— — ———— — —— ——— T - —

Occupation : (x

Atomic States
25+1

LM, M)
2p( 0, 1/2)
25¢ 0, 1/2)
3

2D( 0,-1/2)

-
&L

5S¢ 0,-1/2)

zs) = (0021 ;

Spin Factors

o
0.816497
0.577350
0.000000

0.000000

B
0.000000

0.000000
0.816497

0.577350
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Table 4.3 continued

Occupation : (x y z s) = (1 0 2 1) ; Configuration : s'p

Atomic States Spin Factors

i, Mo af Box o BB
lD(l", o ) -0.500000 0.500000 0.000000 0.000000
1P(l’. o ) 0.500000 -0.500000 0.000000 0.000000
3D(1", 1 ) 0.000000 0.000000 -0.707107 0.000000
3P(l', 1 ) 0.000000 0.000000 0.707107 0.000000
3D(l",—l ) 0.000000 0.000000 0.000000 -0.707107
3P(l',—l ) 0.000000 0.000000 0.000000 0.707107
3D(l", 0 ) -0.500000 -0.500000 ¢.000000 0.000000
3P(l’, o ) 0.500000 0.500000 0.000000 0.000000

Occupation (x y 2z s) = (202 1) ; Configuration : slp4

Atomic States Spin Factors

Srinm, M) * 8
Zni27, 1/2) 0.707107  0.000000
2D( 0, 1/2) 0.408248  0.000000
2s5( 0, 1/2) 0.577350 0.000000
’pez2r ,-1/2) 0.000000  0.707107
2D( 0,-1/2) 0.000000  0.408248
2s¢ 0,-1/2) 0.00000C  0.577350



Occupation :

Atomic States
2S+1

L(M,,
paar, o
tpe1v, o
3p(17, 1
3pa1n, 2
3p(17,-1
3p(1v,-1

30(1'. 0

Table 4.3 continued

1i1

(xyzs)=+(01211 ;

Ms)

)

)

Spin Factors

«g
-0.500000
0.500000
0.000000
0.000000
6.000000
0.000000
-0.500000

0.500000

Bou
0.500000
-0.500000
0.000000
0.000000
0.000000
0.000000
-0.500000

0.500000

Configuration

oo
0.000000
0.000000

-0.707107
0.707107
0.000000
0.000000
0.000000

0.000000

e —— ——— — ———— = A - . - - e - . - v - —— - — - — ——— . e = e m - e - A -

ge
0.000000
0.000000
0.000000
0.000000
-0.707107
0.707107
0.000000

0.000000



Table 4.3 continued
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Occupation : (xy 2 s) = (112 1) ;

Atomic States

25+1

L(Ml, MS)

2D(2", 1/72)

2p(2",-1/2)

2p(
2p
4p
4p(
*p(
4

P(

0, 1/2)
0,-1/2)
0, 1/2)
0,-1/72)
0, 3/2)

01—3/2)

Atomic States

28+1.

L(Ml, Ms)

Z

2

D¢2", 1/2)

D(2",-1/2)

2p(

Zpg

4p

4pq

6, 1/2)
0,-1/2)
0, 1/2)
0,-1/2)
c, 3/2)

0,-3/2)

Spin Factors

xBx
0.707107
0.000000
-0.408248
0.000000
0.577350
0.000000
0.000000

0.000000

Boux,
-0.707107

0.000000

-0.408248

0.000000
0.577350
0.000000
0.000000

0.000000

Spin Factors

B
0.000000
0.000000
0.816497
0.000000
0.577350
0.000000
0.000000

0.000000

BBo
0.000000
0.000000
0.000000

-0.816497
0.000000
0.577350
0.0000090

0.000000

Configuration

*B8
0.000000
0.707107
0.000000
0.408248
0.000000
0.577350
0.000000

0.000000

o110 8

0.000000
0.000000
0.000000
0.000000
©.000009
0.000000
1.000000

0.000000

1
S P

B
0.000000

-0.707107

0.000000
0.408248
0.000000
0.577350
0.000000

0.000909

pge
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

1.000000



113

Table 4.3 continued

Occupation :

Atomic States

(x y z 8) =

(21 2

Spin Factors

1) ;

oo
000000
000000
000000

000000

Configuration

8e
0.000000
0.000000

1.000000

0.000000

: slp

Bot
-0.707107
0.000000

0.000000

0.707107

Sy, M) B
p¢1*, 0 »  0.707107  o.
3p(1", 1 ) 0.000000 1.
3p(1v,-1 ) 0.000000 0.
3p(1*, 0 ) 0.707107 0.
Occupation : (x y z s) = (0 2 2

Atomic States

25+1

L(Ml, Ms)

2pD(27, 1/2)
2p( 0, 1/2)
25( 0, 1/2)
2pD(2,-1/2)
2p( 0,-1/2)

25( 0,-1/2)

Spin Factors

x
-0.707107 0.
0.408248 G.
0.577350 0.
0.000000 ~0.
0.000000 0.
0.000000 0.

1) :

B
000000
000000
000000
707107
408248
577350
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Table 4.3 continued

Occupation : (x y 2z s) = (1 2 2 1)

.
4

Atomic States Spin Factors

2s+lL(Ml, Ms) B ool
(1, 0 )  0.707107  0.000000
3p1r, 1 ) 0.000000  1.000000
3p(1,-1 )  0.000000  0.000000
3p(1, 0 )  0.707107  0.000000

Configuration

ge
0.000000
0.000000
1.000000

0.000000

Bo
-0.707107
0.000000
0.000000

0.707107

- e e e o e W s G —— e . - . - - - ———— —n — - - —— = - - - e - " e -

Occupation : (x y z s8) = (2 2 2 1) ;

Atomic States Spin Factors

2S+1
LM, M) x B
2s( 0, 1/2) 1.000000 0.000000
2S¢ 0,-1/2) 0.000000 1.000000

1.6

Configuration : s™p
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(c)

A complication exists for the near-degenerate atomic

2 0_n+2

configurations s pn and s p , 8ince they give rise to some

states with identical overall symmetry. That is

52 and p2 both generate a 1S state,

3

szp and p~ both generate a 2? state,

52p2 and p4 both generate J‘S, 1D and 3P states,
52p3 and p5 both generate a 2P state,

5294 and 96 both generate a lS state.

In such cases, the actual atomic state functions are linear

combinations zs+1L1 and 2S+1LZ of the one-configuration
functions. These linear combinations are given by orthogonal
transformation

Z25+1 . 25+1,

] Ll(Ml,Ms)> i LZ(MI,MS))
!szpn 25’Ll];(l‘ﬂl,l*is) a b
!pn+2 25+1L(M~,M ) -b a

1"°s

(a2 + b2 = 1), where the numerical values of a and b result

from atomic MCSCF calculations for the particular states of

the pa

"

ticular atoms. It is readily verified that the same

orthogonal transformations which hold between the functions
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|szpn,L>, lpn+2,L> and the functions [Ll>, |L2> are also wvalid
if, in all four functions, one replaces Ml by Ml' or Ml“ as
introduced by Equation (4.28).

Since Ll and L2 are the correct theoretical state
functions, the atomic correlation correction must be
calculated with reference to these wavefunctions and,
consequently, the composite functions, too, must be
constructed from them. In cases where this applies, the
orthogonal expansion of atomic antisymmetrized products in
terms of the one-configuration atomic states aguired from
Table 4.3 must therefore be followed by the expansion of the
one-configuration states in terms of Ll and L2 in order to
obtain the expansions of Equation (4.25). Consider for
exanple the occupations (xyzs) = (2120) and (xyzs) = (0122) of
the configurations p5 and 52p3 respectively. From column o of

subtable (2120) of Table 4.3, one finds

Af (xx) (xB) (zx) (2B (vyx) ¥ = ips 2?(-",1/2))

From column o« of subtable (0120) one finds, by adding 52,

A{(sx){sB)(za) (2B) (yn) 3

2.3 2 2_3

= 1s%p3 %p(1",1/2)> - |s%p° %D(17,1/23>3/92 .

Since 52p3 and pS both yield a 2P state, one must therefore

2?1 and 2Pz, which yvieid the expansions

-

transform to
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AL (xo) (XB) (za) (zB) (Yo 3 = -bizPl(l",l/2)>

+ alz

P,(1",1/2)>
AL (so) (SB) (zx) (2B) (Yyo) 3 = £a|2P1<1",1/2>>

+ blsz(l",l/2)> - 18%p3 %D(1,1/2)>3/47 .

where the coefficients a and b must be known from an
independent calculation of the two 2P states on the atom in

question.

4. Program TMAT

The purpose of the program TMAT is to expand all
molecular SAAPs in terms of composite functions (CFs) as given
in Equation (4.12) and the atomic states composite functions
are also identified. An input description to the program can
be found in the SKUNKB4 reference manual.

Before this program is called upon, SAAPs in terms of
localized orbitals (PLMOs) have to be formed using the program
SAAP described in Chapter II. The program reads in the SAAPs
and generates the Serber-type spin functions corresponding to
the SAAPs. In anticipation of permutation among orbitals, the
singly occupied portion of each SARP is then decomposed into a
linear combination of products of spin-orbitals. For example,

for the SAAP
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¥ = A{¢l¢1¢2¢3@o®0}
where © = (aB-Ba) /¥2, it becomes
¥ = ALO,0,0 ¢, %98 - ¢1¢leo¢25¢3a}/ﬁ .

¥ is now, in the program, effectively two products of
spin~orbitals as defined, with coefficients 1/42 and -1/42
respectively. The space orbitals are then permuted such that
they are grouped by atom and, within an atom, all doubly
occupied orbitals are put before the singles. Among the
singly occupied orbitals, x comes before y, y before z and z
before s, if they exist. This order coincides with the one
used in the expansions of the atomic states in Table 4.3. The
spin part of the products is then changed by the same
permutation in the manner described in connection with
Eguation (4.19). With the space product and spin factor for
each atom at hand, the program then looks up the pre-stored
data given bv Table 4.3 to obtain the atomic states and
coefficients. The antisymmetrized products of atomic states
from all atoms form the composite functions (CFs). Some of
the CFs deduced from different SAAPs may be the same. Only
the unique cnes are kept and ccefficients retained by
summation.

This program also identifies the near-degenerate

configurations szpn and pn+2 and transform them into
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2._n

a s2p? + b pn+2

and -b s2pM + a ptt2 (4.29)

where a and b are real numbers supplied as input to the
program. The energy corrections for the composite functions
from data compiled from information available in the
references mentioned in Section B.5. A collection of
currently available correlation plus relativistic corrections
for all atomic states arising from the snpln valence
configurations has been compiled by the author et al.85

The program TMAT as it stands right now can only handle
diatomic molecules, but the basic algorithm is the same for

any number of atoms and generalization to polyatomic molecules

should be straightforword.

5. Proagram IACC

The preocramr IACC computes the intraatomic correlation
correction to the FORS wavefunction in two wavs: (i) by using
the first order perturbation expression in Equation (4.16) and
(ii) by diagonalizing the corrected Hamiltonian. So far, the
incorporation of the correlation-corrected Hamiltonian matrix

SAAP ,\oSAAP

{H AE } in the MCSCF procedure has not yet been

implemented. An input description to the program can be found

84
in the SKUNK reference manua

(=]

In order to obtain the corrected Hamiltonian, it needs to
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have the correction matrix AECF in Equation (4.14), the
transformation matrix T in Equation (4.15) and also the
configuration mixing matrix U, if applicable. The matrix U is
the mixing between configurations of types szpn and pn+2 as
described in Equation (4.29). All this information is
produced by the program TMAT, although it may also be supplied

or supplemented from the input stream to the program.

6. Tllustrative application to the ground state of imidogen

The procedure is best illustrated with an example. Let
us consider the ground state of the imidogen (NH) molecule.
For the 32- symmetry, there are nine SAAPs in terms of

PLMOs. All of them can be denoted by the symbols

|u2v21>, luszl> or |u2vw2>,

which are defined as follows

1ulylly = 27372 P.{kzuzvzxyel} (4.30)
tuszl> = 27¢ A{kzuszxyel} (4.31)
ludvwzy = 27t A{kzuszxyez} (4.32)

wnere k, X, y denote the PuMOs corresponding to the atomic
w

orbitals 1is, pr and Zpy on nitrogen respectively and u, v, w

can be any one of the PLMOs s, z, h which correspond to the
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atomic orbitals 2s, 292 on nitrogen and 1s on hydrogen

respectively. The spin eigenfunctions are defined as

@
]

1 (aB-Bx) (af-Rox) (aB-Bou) oo/ 27 2 (4.33)

[0}
I

2 {aB-Ba) (xB-Bax) { {B+Px) xo—xox ( xB+Bac) 3/4 (4.34)

The nine possible SAAPs are listed as column headings for the

matrix given in Table 4.4.

On the other hand, there exist eleven different single

configuration composite functions. They are denoted as

follows

!nmSLMlMS/n'S’Mé>

= AX{|N s"pP 25+1L(M1,MS)>|H 5B 25'*1L'(0,Mé)>} (4.35)

where it has always L' = 0 , an S-state. The eleven composite
functions are listed as headings for the rows of the matrix in

Table 4,

1

Table 4.4 exoresses the nine SAAPs of 32- symmetry in
terms of the eleven composite functions. The matrix elements
in the table are obtained by the procedure outlined in Section

C.3.

A mixing of one-configuration atomic states occurs for
i i ! 2,23 1 ] 5 3p £ th
the configurations [N s7p P(0,1)> a2and IN p P(0,1)> of the
nitrogen atom. The appropriate linear combinations are

denoted by



Table 4.4. Expansions °%” SAAPs of NH in terms of CFs

lnm 5 LM M /n S MO is®zhl>  |s®zh2>  |z%shl>
{23 1/2 D0 1/2 / 1 1/2 1/2> -J173 -J273

123 3/2 S0 1/2 / 1 1/2 1/2> -{1/e {1712

123 3/2 S 03/2 /1 1/2 -1/2> 1172 -1/2

{14 1/2 P 0 1/2 / 1 1/2 1/2) 7173
114 3/2 P 0 1/2 / 1 1/2 1/2> -{176
114 3/2 P 0 3/2 / 1 1/2 -1/2> 1172
124 1 PO 1 /1 0 O

122 L PO 1 /2 0 O

o4 1 PO 1 /2 0 O

|13 1 DO 1 /2 0 0>

113 1 S0 1 /2 0 O




123

2 2

1z2sh2>  |s%z%1>  s®h%1>  (z%h%1>  |n%szl>  |h%sz2>

-I173 I273
I273 1173
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4

H

y 3P(0,1)> (4.36)

in pts?p®) 3pco,1)> . (4.37)

IN22(04)1P01> = |N s2p%(p

iNO4(22)1P01>

An MCSCF calculation of the free nitrogen atom yields the

orthogonal transformation

Nitrogen 1s2p% 3p(0,1) ip* 3p(0,1)
1s2p2(pY) 2P(0,11> 0.9900 ~0.1414
ipts%p?) 3P(o,1)> 0.1414 0.9900

In order to cobtain the expansions of the molecular SAAPs
in terms of the actual atomic state composite functions, one
must premultiply the matrix given in Table 4.4 by the matrix
transformation given in Table 4.5. The resulting matrix is
matrix T occurring in Equation (4.12).

Table 4.6 contains the results of FORS and the FCRS-IACC

S

culations with a nitrogen (1l4s,7p,2d4/5s,3p,2d) basis and a

| ad
sl

Ca

143
3

ydrcge

~

§s,2¢/3s,2p) basis ¢f even-tempered gaussian

-

primitives, for which the superposition error is negligible.
Given are the results corresponding to the equilibrium
distance Re = 2 bohr and the separated atom distance R = 1000
bohr. The first row lists the energies obtained for the
ground state. The next nine rows list the expansion

coefficients of the wavefunction in terms of the SAAPs. The
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Table 4.5. Composite functions for NH in terms of atomic

states including szpn—pn+2 configuration

interaction

No. Composite function

1 123 1/2 0 1/2 7/ 11/2 1/2>

2 123 372 0 1/2 7 1 1/2 1/2>

3 |23 3/2 0 372 /7 1 1/2 -1/2>

5 {14 3/2

D
S
S

4 14 1/2 P 0 1/2 / 1 1/2 1/2>
PO11/2 /1 1/2 1/2>
P

6 |14 3/2 0 3/2 /1 1/2 -1/2>

7 ({241 P01/ 100

1223 PO 1/2 0 0> (04 1P O 1/2 0 O

co
)
(8]
'..l
]
@)
-
N
©
<o
N/
©

10 131 D01/ 20 0>

11 {131 8017/ 20 0
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Table 4.6. Energies and wavefunctgogs of FORS and FORS-IACC
calculations for the x™X ground state of NH
FORS FORS+IACC
Internuclear distance Re R°° Re R,

Total energy(hartree)

-55.0025 -54.9002 -55.2501 -55.1150

N

Is%zh1> 6621 .8165 .6457  .8165
| s2zh2> -.0466 -.5773 -.0350 -.5773
|z%shl> .3961 .0 .3760 .0
|z%sh2> -.0610 .0 -.0510 .0
1s22%1> .5474 .0 .5694 .0
15%h%1> .2253 .0 .2140 .0
122021 .0885 .0 .0927 .0
(h%sz1> -.2469 .0 -.2426 .0
in?sz2> .0193 .0 0220 .0
123 172 D 0 1/2 /1 1/2 1/2> ~-.3442 0 .3442 .0
123 3/2 S 0 1/2 71 1/2 1/2> =-.2837 ~-.5S ~.2737  -.5
{23 3/2 8 0 3/2 /1 1/2 -1/2> .4%14 8650 4741 .9880
|14 1/2 P 0 1/2 /1 1/2 1/2> -.1633 .0 ~.1755 .0
ii4 3/2 P 0 1/2 /1 1/2 1/2> ~-.1683 .0 -.1682 .0
114 3/2 P 0 3/2 /1 1/2 -1/2> .29i5 .0 .2913 .0
{24 1 PO 1 /1 0 0> 5474 .0 .5694 .0
(22 1 PO 1 /2 O O 2105 .0 .1987 .0
04 1 Do 1 /2 0 0> 1195 .0 1220 .0
113 1 DO 1 /2 0O O 1583 .0 1580 .0
(12 1 S0 1 /2 0 O -.1905 .0 -.1853 .0
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final eleven rows list its expansion coefficients in terms of

the atomic state composite functions which were given in Table

4.5.

From the first line in Table 4.6, one obtains the binding

energies

AE(FORS)

"
i

0.1023 hartree 2.78 eV

and AE(FORS-IACC)

0.1350 hartree

3.68 evV.

An SCF calculation yields AE(SCF) = 2.06 eV. The experimental

value is 3.85 eV.
Further applications and numerical r=2sults of the

FORS-IACC approach is given in the next section.

D. Quantitative Results for Diatomic Molecules

The basic principles and the mathematical formulations of

the FORS model and the FORS IACC model for mclecular

expected toc recover non-dynamical, degeneracy-type correlation
energy changes, FORS IACC wavefunctions are expected to
recover alsoc dynamical correlation energy changes that occur
along paths of chemical reactions.

During the formaticn of diatomic meclecules, there cccur

extensive rearrangements of the electronic structure of the
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combining atoms, and it is for this reason that the
theoretical reproduction of diatomic dissociation curves
presents one of the most severe tests of the ability of any
electronic structure theory to predict quantitatively energy
changes that occur during chemical reactions. Furthermore,
extensive and accurate experimental information is available
for these moleculess, so that the performance of any theory
can be readily assessed without any ambiguity.

In the present investigation, there are reported the
results of applying the aforementioned two models to the
calculations of binding energies of a series of diatomic
molecules. Considering the conceptual and operational

simplicity of the models, their quantitative performance is

gratifying.

l. Basis sets

In order to test the effectiveness of the propcsed models

in a credible fashicn, it is essential that any errcrs
asscociated with the limitation of the bagis set be gmaller

than those errors for which the model is to be held
responsible. For this reason, very large atomic basis sets
were employed in the present calculations, typically a
(14s,7p,2d) even-tempered gaussian primitive set7 contracted
in Raffenetti-fashion8 to a (5s,3p,2d) basis which corresponds
to a basis of "triple zeta plus polarization" or better

quality. 1In Table 4.7, there are listed the basis sets for



Table 4.7. Basis sets and basis set errors in SCF
calculations of atoms and diatomic molecules
Atomic Atomic Polarization Molecular
Molecule basis set® errorb(mh) function® errord(mh)
Homonuclear molecules
H2 10s3pld/5s3pld 0.005 Qp=0.3,1.3,5.4 0.015
Qd=1.96
H2 6s2p/382p 0.16 Qp=0.4,1.6 0.54
Liz 1233pld/6s3pld 0.16 §p=0.0678,0.264, 0.3
1.03, §d=0.275
B2 1487p2d/433p2d 0.16 Qd=0.145,0.913 3.5
C2 1437pZ2d/483p2d 0.32 §d=0.2,l.0 4.7
N2 1437p2d/583p2d 0.57 Cd=0.2,1.0 7.5
02 1487p2d/4s83p2d 0.98 gd=0.5,1.6 7.9
F 1437p2d/4s3p2d 1.57 £q=0-5,1.6 6.0



Molecular error in heteronuclear molecules (mh)

No®'f 5.9 cNe 4.0 ve  2.27
co® 6.3 BHY 0.48 oH% 2.06
Bo® -1.1 cHY 0.78 FHY 3.66

a Even-tenpered gaussian basis of Reference 1l1.

b Error of SCF calculation with respect to the exact
Hartree-Fock limit for the ground states. See Reference 1l.

¢ See Reference 10.

d Error of SCF calculation from with respect to SCF
calculation with extensive exponential basis set for molecular
ground states,

€ Basis set as above.
£ Basis set for NO 1s 14s7p2d/5s7p2d for both atoms.

9 Basis set on hydrogen for all hydrides cited is the
682p/332p set.

0ET
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the various atoms and their performance in the atomic and
molecular SCF calculations. The intraatomic error increases
from 0.1 millihartree in Li to 1.6 millihartree in F. It

is safe to assume that, with this accuracy, basis set
superposition errors leading to fortuitously good binding
energies will be negligible. The molecular errors increase
from 0.3 millihartree in L12 to about 8 millihartree in 02.

They are due to omission of f polarization orbitals, and,

perhaps, to insufficient optimization of d-orbitals.

2. FORS calculations

The calculations reported here pertain to the ground
states of diatomic molecules at their experimental equilibrium
distances. The theoretical minima of SCF calculations often
occur at smaller distances, whereas FORS calculations tend to
vield slightly elongated bonds. In either cases, the

calculated dissociation energies would increase only

hydvogen, contribute a doubly filled
core orbital, namely the ls A0, and four reactive CCOs
(configuration generating orbitals), namely 2s, pr, Zpy and
2pz. The number of configurations obtained by allowing for
all possible coupiings between the CGOs in a molecule, i.e.,
the dimension of the full valence space, depends upon the

number of electrons. It is largest when there are about as

manv electrons as there are orbitals.
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In Table 4.8, there are listed various data for the
molecules considered which are pertinent to the reported
calculations, namely the symmetry of the molecular ground
state, the symmetries of the ground states of the separated
atoms, the internuclear equilibrium distance and the dimension
of the full reaction space. The number listed for this
dimension is actually the number of spin-adapted
antisymmetrized products (SAAPs) which constitute the
practical basis of our calculational procedure. It is
possible to form certain linear combinations with fixed
coefficients of the SAAPs with incompletely filled #-shells,
yielding “"configuration state functions (CSFs)" which belong
to the appropriate irreducible representations of Cocv or th.
The number of such CSFs with independently wvariable
coefficients is often smaller than the number of SAAPs listed.

The calculations were performed with the ALIS system for
12

molecular calculations The generation of the Full Reaction

1 Chapter 1Y, The resulting guantitative

'3
v
i
1)
b=t
k<
«“t
iy
®
W

CF and FORS energies
for the molecules and the separated atoms. The atomic FORS
energies differ from the SCF energies for boron and carbon

because the ground states of the two atoms involve

«r

. . . . 2 3 . 2 2 4 .
configuration interactions: s"p and p  in B, s"p” and p in C.

(See Section IV.C.3(c)).
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Table 4.8. Characterization of Full Reaction Space of ground
state of some diatomic molecules

Equilibrium No. of States of
Molecule Symmetry distance (bohr) SAAPs Separated Atoms

Homonuclear molecules

1+ 2 2
H, Iy 1.4 2 s + %g
Li, 25t 5.07 8 25 4 25
g
B, 32; 3.0905 136 2p 4 2p
c, lz; 2.3897 264 3p + 3p
N, lz; 2.068 176 45 4 45
0, 32; 2.2817 44 3p + 3p
1.+ 2 2
F, Iy 2.68 8 P+ %p
Heteronuclear molecules
CN 2g* 2.2144 616 3p + 45
2.+ 2 3
BO z 2.2977 616 P+ 3p
co 1z 2.132 316 3 4+ 3p
NO 2n 2.1747 252 45 + 3p
Hydrides
BH lp+ 2.3289 19 2p 4 23
CH 2 2.1163 18 3p + 23
3_- 4 2
NH z 2.0 9 s + 2g
OH 2 1.8324 10 3p + %5
1+ 2 2
FH b 1.7325 8 P+ %5

2 In terms of symmetry adapted molecular orbitails.
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Table 4.9. Total energies from SCF and FORS calculations
Energies (in hartrees)
—— Molecule Atom
Mclecule SCF FORS SCF FORS
Homonuclear molecules
Hza -1.1336 -1.1521 -0.5 -0.5
H,” -1.1331 -1.1514 ~0.4998 -0.4998
L12 -14.8712 -14.9006 -7.4326 -7.4326
B2 -49.0874 -49.2180 -24.5289 -24.5601
02 -75.4015 -75.6373 -37.6883 -37.7056
Nz -108.9853 -109.1345 -54.4004 -54.,4004
O2 -149.6575 -149.7627 -74.8084 -74.8084
F2 -198.7641 -198.8444 -99.4078 -99.4078
Heteronuclear molecules
CN -92.2192 -92.3708 see above
BO -99.5566 -99.6782 see above
CoO -112.7829 -112.9144 see above
NO -129.2894 -129.4055 see above
Hydrides
BH -25.1309 -25.1858 see above
CH -38.278¢ -38,3135 see above
NH -54.9756 -55.0026 see above
OH -75.4188 -75.4432 see above
FH -100.0666 -100.0909 see above
a

b

Basis set is 10s3pld/5s3pid.

Basis set 1is 6s2p/3s2p.
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From the data in Table 4.9, one deduces the binding
energies listed in Table 4.10. An appropriate measure of the
effectiveness of the FORS model is the fraction of the
correlation contribution to the binding energy which is

recovered by the model, as defined by

{AE(FORS) - AE(SCF)} / {oE(exp) - AE(SCF)}

where

AE = Ef{molecule) - E(separated atoms)

is the binding energy. It is seen that in most cases the FORS
model recovers between 70% and 90% of the correlation error.
By and large, the model is more effective when the number of
valence electrons is smaller than the number of valence
orbitals. In absolute values, the remaining errors lie
between 5 and 30 Kcal/mole. This is larger than the 2-5
Kcal/mole error attributable to basis set deficiencies and it
is still larger than the accuracy desired for many chemical
........ , that dissociation
of diatomic meolecules involves extreme changes in electron
correlations. In many reactions between larger molecules, the
changes in electron correlations are much less severe and the
FORS model can then be expected to yield energies accurate to

a few Kcal/mole.
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Table 4.10. Dissociation erergies of diatomic molecules

Correlation Error of FORS
Molecule SCF FORS exp recovered approximation
(eV) (eV) (eV) (%) (Kcal/mole)

Homonuclear molecules

H,® 3.635  4.14 4.748 45 14.1
Hzc 3.629 4.13 4.748 45 14.3
Li, 0.16 0.96 1.068 88 2.5
B, 0.81 2.64 3.08 81 10.1
Cy 0.68 6.14 ©6.32 87 4.1
N2 5.02 9.06 9.905 83 198.5
0, 1.12 3.98 5.213 70 28.4
F2 -1.40 0.78 1.658 71 20.2
Heteronuclear molecules
CN 3.55 7.21 7.89 84 15.7
BO 5.97 8.42 8.40 101 -0.5
Cco 7.73 10.889 1.226 90 7.7
NO 2.19 5.35 6.615 71 29.2
Hydrides
BH 2.78 3.42 3.57 81 3.5
CH 2.46 2.95 3.63 41 15.7
NH 2.06 2.79 3.85 41 24.4
OH 3.01 3.67 4.62 41 21.9
FH 4.33 £.99 6.12 37 26.1

a Molecglar data were oggained from Huber and Herzbegge
except for DO(NH) from Piper and atomic data from Moore™ .

-

Basis set is 10s3pad/S5s3pld.

€ Basis set is 6s2p/3slp.
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The present calculations allow us to make a prediction
regarding the BO molecule which has received little
experimental or theoretical attention. 8o far, its bond
energy has not been well determined experimentally; published
values range from 7.4 eV to 9.2 eV. Since in all cases,
except for BO, the FORS model recovers 70-90% of the binding
energy correlation error, and since it recovers B4% in the
isoelectronic CN molecule, it seems most likely that a similar
result is also valid for BO. Assuming that (85%10)% is in
fact recovered for this molecule, the bond energy of BO would
be predicted to be (8.85%0.3) eV, which is considerably larger
than the recent thermochemical value of 8.44%0.12 eV6.

In Tablie 4.11, there are listed dipole moments obtained
from the FORS wavefunctions. In all cases the FORS values are
improvements over the SCF values. The largest remaining error
may be the failure to average over the vibrations of the
atoms. The dipole moment of BO has not been measured so far.
Its prediction in Table 4.11 is probably accurate to 0.3

MNalea
LSOy S .

3. FORS IACC calculations

The FORS IACC method reguires the FORS wavefunction to be
expressed in terms of SAAPs which are constructed from
projected localized FORS orbitals (PLMOs). For homonuclear

diatomic molecules, the number of PLMO-generated SAAPs needed
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Table 4.11. Dipole moments

Molecule SCF FORS exp?
{in Debye)

CN (CTN) 2.30 1.62 1.45

BO (B'07) 2.00 2.34 -

co (c 0% ~0.26 0.30 0.122

NO (N 0% -0.31 0.24 0.159

a Experimental values from Reference 6.
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to span the Full Reaction Space is greater than the number of
SAAPs generated from natural orbitals, because the g/u
symmetry is not used. The number of composite functions (CFs)
required to span the Full Reaction Space is in general still
larger, as was discussed in Section IV.C.2. For the molecules
investigated here, the specifics are given in Table 4.12.
Listed are the symmetries and equilibrium distances of wvarious
states, the symmetries of the separated species, the number of
PLMO-generated SAAPs and the number of CFs required to span
the Full Reaction Space.

FORS IACC calculations on diatomic molecules were
performed using the ALIS system12 augmented by the program
TMAT to generate the transformation matrix in Edquation
{4.12) and the program IACC84 to determine the corrected
hamiltonian matrix. Both programs are described in detail in
the preceding section.

The energies results of the rORS IACT calcuiations are
presented in Table 4.13. For the sake of comparison, the
results from SCF and FORS calculations are also included. As
discussed in the preceding sections, it is possible to obtain
approximations to the FORS IACC energies from FORS
wavefunctions by first order perturbation theory. These
approximate energies lie in all cases above those obtained by
diagonalizing the corrected hamiltonian matrix. The
deviations of the first order energies from the exact ones are

also listed.
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The dissociation energies obtained from these
calculations, together with the experimental values and those
resulting from SCF and FORS calculations are listed in Table
4.14., With the exception of the ground state of N2 and the
522_ excited state of CH, the theoretical results improve
consistently in proceeding from the SCF to the FORS and the
FORS IACC model. An analysis of the origin of the failures in
N2 and CH should prove constructive for a better understanding
of the correlation error and appropriate improvements of the
model.

The spectroscopic excitation energies obtained from these
calcuiations for the CH and the NH molecules are listed in

Table 4.15. With the exception of BZZ- state of CH, the

agreement with the experiment is very good.
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Table 4.12. Specifics of various states of some diatomic
molecules

State Equilibrium Symmetry of
Molecule and No. ofa No. of distance Dissociated
Symmetry SAAPs CFs (bohr) species

Homonuclear molecules

H, xlz; 3 4 1.4 25 4+ 2g
N, xlz; 328 584 2.068 45 4+ s
0, x3z; 96 118 2.2817 3 + 3p
F, xlz; 16 22 2.68 2p + %p
Hydrides
BH xtzt 19 25 2.3289 2p + 2g
CH X 18 22 2.1163 3p + 25
a*z” 10 11 2.0470 3p 4+ 25
PN 16 22 2.0823 p + %
8%z~ 17 22 2.2080 3p + s
o2st 22 24 2.1057 ln + 2g
NH 35" 12 14 2.0 %5 + %g
ala 12 21 2.0 %p + 2s
piz* 19 25 2.0 %p + %5
OH X%n 10 12 1.8324 3p + 25
FH xtst 8 10 1.7325 2p + 25

2 SAAPs in terms of Projected Localized FORS MOs (=
iclecule adapted valence Als).



Table 4.13.

Energies obtained from FORS IACC model

State R = Equilibrium distance
Mplecule and Energies (in hartree) as?
Symmetry SCr FORS IACC (mh)
Homonuclear molecules:
H, xlz; -1.1336 -1.1521 -1.1679  0.25
N, xlz; -108.9853  -109.1345  -109.6660  6.33
0, x3z; -149.6575  -149.7627  -150.4133  1.26
F xlz; -198.7640  -198.8443  -199.6673  0.95
Hydrides:
BH xlzt  -25.1309 -25.1858 -25.3081  0.46
CH xn ~38.2786 ~38.3135 -38.4921  0.76
a*s™  -38.2892 -38.3073 -38.4580  1.68
a%a -38.1794 -38.1962 -38.3871  0.59
8227 -38.1574 ~38.2030 -38.3904  1.58
c’ct -38.1272 -38.1615 -38.3488  1.06
NH X’z  -54.9756 -55.0025 -55.2501  1.16
ats -54.9087 -54.9298 -55.1939  0.92
izt -s4.8442 ~54,8977 -55.1559  1.36
OH x°n -75.4188 -75.4432 -75.7901  ©.95
FH x'z™  -100.0666  -100.0509  -100.5490  1.38
& AE = E(FOPC) - E(IACC). FOPC = First order

perturbation correction,

see Equation (4.16).
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Separated atoms

Energies (in hartree)

SCF FORS IACC

-0.9996 -0.999%6 -0.999%6
~-108.8008 -108.8008 -109.2304
-149.6168 -149.6168 -150.2286
-198.8156 -198.8156 -199.6246
-25.0287 ~-25.0599 -25.1589
-38.1881 -38.2055 -38.3580
-38.1881 -38.2055 -38.3580
-38.1308 -38.147¢ -38.3121
-33.1881 -38.2055 -38.3580
-38.1308 -38.1476 -38.3121
-54.9002 -54.9002 -55.1150
-54,7953 -54,7953 -55.0281
-54.7271 -54.7620 -54.9838
-75.3082 -75.3082 -75.6141
-98.9076 -98.5076 -59.3121
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Table 4.14. Dissociation energies obtained from FORS IACC

model

State
and

Molecule Symmetry epr

De (eV)
SCF FORS IACC

Error

2 (eW)

SCF FORS IACC

Homonuclear molecules

H, xlz; 4.75  3.64 4.15 4.58  1.11 0.6 0.17
N, xlz; 9.91  5.02 9.08 11.86  4.89 0.83 -1.95
0, x32; 5.21  1.11 3.97 5.03 4.1 1.24 0.18
F, xlz; 1.66 -1.40 0.78 1.16  3.06 0.88 ©£.50
Hydrides
BH x*st  3.57  2.78 3.43 4.06  0.79 0.14 -0.49
CH x4 3.63  2.46 2.94 3.65  1.17 0.69 -0.02
atzs” 2.91 2.75 2.77 2.72 0.16 0.14 0.19
a%a 2.03 1.32 1.78 2.04  0.71 0.25 -0.01
B%c~  0.41 -0.84 -0.07 0.88 1.25 0.48 -0.47
c%2s*  0.96 -0.1C 0.38 1.00  1.06 0.58 -0.04
NH x>t  3.85  2.06 2.78 32.68  1.79 1.07 0.17
ala 4.67 3.08 3.66 4.51 1.59 1.01 0.16
izt 4.m9 3.18 2.69 4.68 1,62 1.11 0.12
OH X1 4.62 3.0l 3.67 4.79  1.61 0.95 -0.17
FH x*zt  6.12  4.33 4.99 6.45  1.79 1.12 -0.33
Error = De(IACC) - De{exp).
b

except for Dg from Piper

86

and atomic data from Moore

Molecular data were obtained from Huber and Herzbetg6

87
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Table 4.15. Excitation energies of diatomic molecules from
SCF, FORS and FORS IACC calculations

Transition (eV) SCF FORS FORS IACC exp

CH x°m - a%z” -0.29 0.18 0.98 0.72

-+ a%p 2.70 3.20 2.90 2.86

- B2z~ 3.30 3.02 2.81 3.16

- c2s* 4.12 4.15 3.95 3.93

NH X°% - ala 1.83 1.97 1.52 1.57
1

» pgt 3.58 2.84 2.49 2.63
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V. AUGMENTATION OF THE FORS MODEL BY
SELECTED EXCITATIONS FROM THE FULL REACTION SPACE

A. Introduction

1. Approaches to electron correlation

Consistently accurate predictions of chemical and
physico-chemical properties cannot be had within the self-
consistent-field approximation. To achieve this goal,
electronic wavefunctions must be improved by taking into
account interelectronic correlations. However, since the main
objects of chemical interest are relative changes on energy
surfaces, the aim of quantum chemical calculations is only the
recovery of those parts of the correlation energy which change
along reaction paths, rather than the total correlation
energy. In other words, the changes of energy surfaces with
variations of molecular geometry have to be determined with
greater accuracy than the absolute values of the energy.

The mest effective adaptation of wavefunctions to
describe electron correlations consists of including odd
oowers of all interelectronic distances explicitly. But the
mathematical difficulties of this approach have so far proven
insurmountable for systems consisting of more than two
electrons. The alternative is to expand the wavefunction in
terms of antisymmetrized products of orbitals. Such methods

can be classified as follows:
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(i) Straight configuration interaction ("CI"). Here the
orbitals are usually taken from a preliminary SCF
calculation. Two options exist:

(a) All configurations are included which can be
constructed from the basis set.

(b) Only a subset of configurations is selected for
the configuration interaction calculation.

(ii) Configuration interaction coupled with orbital
optimization, i.e. configuration mixing as well as
orbital shapes are determined by energy minimization
({MCSCF). Again two options exist:

(a) All configurations from a chosen set of
configuration generating orbitals (CGOs) are
included. The complete active space self-
consistent-field (CASSCF)26—29'88 is an exampie
of this approach. 1In this case, orbital
optimization can improve the wavefunction onliy if

the numbher of CG0s is smaller than the total

number of basis functions used to express the
orbitals.

(b) Only a subset of configurations is selected for
the MCSCF calculation, for example in the
so-called pair theories.

(iii) Non-variatiocnal methods, in particular many-body
perturbation theories, replacing the solution of the

CI eigenvalue problem.
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The number of configurations that can be handled is largest
for the methods of type (iii) and smallest for the method of
type (ii), with those of type (i) lying in between. On the
other hand, the orbital optimization implicit in the methods
of type (ii) permits a reduction in the number of
configurations without serious damage to the gquality of the
results. In recent years, a combined approach has been found
attractive. First an MCSCF calculation is carried out for a
“reference function" of type (iib) consisting of a limited
number of configurations. Then a CI calculation is performed
by adding to the reference function a large number of

configurations selected according to some principle.

2. Augmentation of the FORS model

The FORS method discussed in Chapters II and III is of
type (iia). 1Its configuration generating orbitals are chosen
on the basis of physico-chemical intuition: their number is
equal to the number of valence orbitals on the participating
atoms. For this reason, the model is expected to recover the
non-dynamical correlation of the valence electrons. Its
application to diatomic molecules19 usually leads to a 70% to
90% recovery of the correlation contribution to dissociation,
depending upon the system. Since the model is of type (iia),
its limitations arise entirely from restricting the number of

confiqurations generating orbitals and the inclusion of
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"augmenting configqurations" involving additional "“external

orbitals" is required in order to recover a greater part of
the correlation energy in a non-empirical manner.

When the active space is expanded by including external
orbitals, it is again necessary to choose between alternatives
similar to those described by the aforementioned type (i),
(ii), (iii). As regards to the selection of configurations,
it is practical to classify the additional configurations,
according to the number of external orbitals they contain, as
*single excitations", "double excitations", etc., with respect
to the Full Reaction Space. No assumptions are required
regarding the external orbitals, if the additional augmenting
configurations contain all configurations up to a specific
excitation type (e.g. all single excitations, or all single
and double excitations) which can be generated from the entire
atomic orbital basis. On the other hand, essentially the same

accuracy can be attained with a considerably smaller number of

external

(3]

onfiguration generating orbitals when they, too, are
MCSCF optimized.

The approach taken in the present investigation is as
follows. The full FORS wavefunction is chosen as zeroth
approximation. To these a limited number of external
configuration generating orbitals are added, which are then
MCSCF coptimized. As augmenting configurations we choose all

configurations up to a certain excitation type that can be
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generated in a manner to be described from these configuration
generating orbitals. Since the FORS orbitals are dominant,
their optimization is affected only negligibly by the
augmenting configurations all of which have small weights.
Therefore, the FORS orbitals are optimized only within the
FORS calculation. They are kept "frozen" (i.e. their shapes
are left unchanged) during the calculation with the augmented

wavefunction, when the external orbitals are MCSCF optimized.

However the mixing coefficients of the various configurations

in the Full Reaction Space are permitted to readjust during
the augmented calculation.

The guestions to be explored concern the details of the
configuration selection. In particular, which FORS
configurations are chosen to generate excited configurations,
which FORS orbitals are being replaced by external orbitals

and which excitation levels are included.

(YOIH!?v>/{(YOIHlYO>—<YV!H!Yv>} . (5.1)

If single excitations are generated from the FORS wavefiunction
taken as a unit, then the interaction elements <Y0§Hi¥v>

vanish, according to the generalized Brillouin theorem, and no
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single excitation improvement is possible. Such improvements
do obtain, however, if single excitations are made out of
individual contributing FORS configurations. In such cases,
it is apparent that the denominator increases with the
excitation level and greater improvements are therefore
expected from additional single excitations.

It is important to note that in selecting those FORS

configqurations out of which excitations are made, one must

consider not only SAAPs which contribute greatly to the FORS
wavefunctions, but also those which contribute l1ittle or,

because of symmetry reasons, possibly not at all.

3. Choices of molecules

The hydrogen fluoride and fluorine molecules are chosen
as examples for two reasons. On the one hand, the
contribution of correlation to their binding energies is
particularly large and has proven to be difficult to recover.
On the other hand, they have nevertheless a transparent
electronic structure. The dissociation involves the cleavage
of only one bond and the roles of the different orbitals,
whether they are lone pairs or bonding, are easily
identifiable. The FORSE orbital

into three groupleb according to their behavior during the

m

can essentially be divided

dissociation process, as indicated by the following.
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Orbital Deformation Occupancy

Inner shell Essentially undeformed Essentially unchanged

Lone pair Essentially deformed Essentially unchanged

Bonding Severely deformed Essentially changed

Since it seems questionable whether correlation in inner
shell orbitals is important for molecule formation,
calculations were performed with correlating orbitals to the
inner shell for the FH moleculeag. It was found that the
energy lowering at the equilibrium distance and that for the
separated atoms differed by less than 0.5 millihartree. Since
we are interested in the dissociation energies rather than in
the absolute energies, correlating orbitals for inner shells

are omitted in the sequel.

B. The Hvdrogen Fluoride Molecule

l. FORS wavefunction

The ground state of FH is a 1£+ state, the equilibrium
distance is Re = 1.7325 bohr. All calculations were performed
using the following quantitative basis: an unscaled (14s,7p,2d
/ 5s,3p,2d) basis, with polarization exponents of §d=0.36 and
1.26 for F atom and an unscaled (6s,2p / 3s,28) basis with
Qp=0.4 and 1.6 for H atom. The SCF and FORS calculations

yield the following results:
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E(R_) E(R,) AE

(hart%ee) (hartree) (eV)
SCF ~100.0666 -99.,9088 4,30
FORS -100.0908 -99.9088 4,95

Since the experimental dissociation energy is 6.12 eV, only
36% of the correlation energy are recovered by the FORS
wavefunction in this case.

The Full Reaction Space for the lZ+ symmetry of FH is
spanned by eight SAAPs in terms of which the FORS wavefunction
is expressed. The first column of Table 5.1 lists these
SAAPs. The second column lists the corresponding coefficients
of the FORS wavefunction at the equilibrium distance. 1In this
table, k denotes the fluorine inner shell orbital, s, x and y
designate the fluorine lone pair orbitals and o and c* are the
bonding and antibonding orbitals respectively. All these
orbitals are molecule-adapted by the MCSCF optimization. The

spin function is

o, = (o8-8} /123>

and the antisymmetrizer is
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Table 5.1. FORS wavefunction for FH

SAAP Coefficient
o, = A tk’s’x’y’o’e,3 0.994740
¢, = A (k’s?x’yPoc™e ) -0.010256
o, = A tk’s’x?y%e™ %03 -0.086545
¢, = A {kzxzyzczsc*eo} -0.000927
o, = A {k’x’y%0™ %5003 0.045354
2, = A tk’s’x%0%0™ %0} ~0.011266
o, = A tk’s’y%0%s" %03 ~0.011266
o, = A (k’x’y2o?s™ %0 -0.024215
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where q is the riumber of doubly occupied orbitals.

It should be noted that a unitary transformation is
arbitrary among the orbitals in a Full Reaction Space. Any
such transformation, while leaving the wavefunction invariant,
will change the coefficients associated with various SAAPs.
The coefficients in Table 5.1 result when the FORS MOs are

determined as natural orbitals of the wavefunction. It 1s

remarkable that the natural orbitals k, s, x, and y have the
aforementioned localized character on fluorine. The extremely
localized shapes of the natural orbitals s, x, and y are

illustrated by the contour plot of Figure 5.1.

2. Augmented wavefunctions. First selection method

a. Calculation at the equilibrium distance Since the
natural orbitals s, x and y have the character of lone pairs
on fluorine, it is to be expected that their correlation

changes only little when the molecule is formed. The two

correlation energy. In "zeroth order"” this pairing process is
described by the three configurations Ql’ Qz and QB of Table
5.1. It is seen that configurations &1 and 93 are indeed

dominant. {The small coefficient of QZ is due to the fact

that the MOs are natural orbitals.) Accordingly, it is
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Figure 5.1. Natural molecular orbitals of the FORS wavefunction of FH
at R = 1,.7325 bohr. Numbers indicate occupancies

961



157

reasonable to consider excitations out of the SAAPs Ql' Qz, Q3
and, moreover, to allow more elaborate additional correlation
in the bond orbitals o, c* than in the lone pair orbitals.

The following types of excitations are therefore
considered: single excitations out of s, x, ¥y and single plus
double excitations out of o and 0*. As regard to external
orbitals, we consider one, two and three external orbitals of
the various symmetry types. As mentioned before, these
external orbitals are optimized by the MCSCF procedure in
terms of the quantitative basis, while the FORS MOs are kept
unchanged.

The results of these calculations for the equilibrium
distance are reported in Table 5.2. The first column of this
table lists the various excitation choices which were
investigated. For example, type 3: s—20’ indicates that

excitations were made only out of orbital s (as mentioned

before, only single excitations are considered for s) and that
two external orbitals o’ were made available. Thus all single
excitations out of s into any one of the two external orbitals
were constructed for the SAAPs Ql’ 92 and 93 and added to the
FORS wavefunction as augmenting configurations. On the other

hand, type 10: o-=lo’,ln1" indicates excitations were made out

* .
of ¢ and ¢ ({as mentioned before, single and double

(]

- - * - 1
xcitations are considered for o, o ) into one external ¢

orbital and into one pair of external orbitals wx' and #_'
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Table 5.2. Augmented FORS calculations with selected
excitations for dissociation energy of FH.
Selection I
Type No. of a a
of additional E at R E at Rm AE AE-ABO
Excitations SAAPS (hartre8) (hartre€) (eV) (eW)
1 FORS 0 -100.0908 -99.9088 4.954 0
2 s-lo’ 4 ~100.0994 -99.9179 4.939 -0.015
3 s920" 8 -100.1017 -99.9179 5.002 0.048
4 molr’ 8 ~-100.1265 -95.9095 5.904 0.950
5 =27’ 16 ~100.1274 -99.9095 5.927 0.973
6 o-io’ 3 -100.0943 ~99.,9088 5.048 0.094
7 o420’ 7 ~100.909843 -99.9088 5.048 0.094
8 o—lm’ 2 -100.0946 -99.9088 5.057 0.103
9 o-27’ ) -100.0952 -99.9088 5.072 0.118
10 o-lgo’,17’ 5 -100.0981 -99.9088 5.152 0.198
il o220’ 27’ 13 -100.09%4 -3$5.5088 5.187 0.233
12 s=20' ;w227 ;
o*2c’ ,27’ 27 -100.1438 -99,9188 £.123 1.169
i3 s-3g’ ;w27 ;
o300’ ,27’ 46 -100.143S -89.9188 6.124 1.170
14 s20' ;X231 ;
o220’ ,31’ 51 -100.1446 -99.9188 6.145 1.191
15 s=20' ;27 ;
o—*20' ,2%' ,18 38 ~-100.143¢% -99.9188 6.124 1.170
a - rae . =
Re = 1,7328 bohrs; Rw 1000 bohrs.
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Similarly, type 12 implies that all possible of the following
excitations were considered: single excitations out of s, x, ¥y
and single plus double excitations out of o, o* into the same
external orbitals, namely two o-type orbitals, two wx—type
orbitals and two wy-type orbitals. The fifth column lists the
predicted dissociation energy. The last column lists the
improvement over the FORS result.

Comparison with the experimental dissociation energy of
6.12 eV shows that any one of the wavefunctions denoted as
type 12 to 15 recovers the entire correlation contribution to
the dissociation energy of FH. It is also seen that the
correlation effects are almost additive. The s, 7 and ©
improvements of the wavefunctions denoted as type 3, 5, 11 add
up to a total of 1.256, which is comparable to the value
listed for type 12. It seems that one correlating o-type
orbital is needed for s and another one for ¢ and that the

same holds for the t-type orbitals correlating o and w. Thus,

ot

nt
oT

v

1 of two o' and two 7' external orbitals are adeguate.

5} v

he correlations from additional o', %' or 8§ orbitals are

3

egligible when the external orbitals are optimized. This
implies that the reported results are equivalent to what would
be found if all possible excitations of the described types
were included. In other words, no arbitrary seiection has

been introduced by limiting the number of external crbitals.

The most remarkable result is that single excitations from the
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lone pair type FORS 7 orbitals to external 7 orbitals provide
by far the largest contribution to the correlation part of the
dissociation energy beyond the FORS model.

It is possible to express the FORS configurations
entirely in terms of the localized FORS orbitals. Contour
plots of these localized orbitals are shown in Figure 5.2. It
is seen that the orbitals s, x, and y are similar to those in
Figure 5.1 and that the bonding/antibonding orbital pair is
replaced by the molecule-adapted orbital z=sz on fluorine and
the molecule-adapted orbital h=1s on hydrogen. The
corresponding eight SAAPs can be obtained simply by
substituting the first column in Table 5.1 the orbitals z and
h for o and o*. {The expansion coefficients in the second
column will be different of course.) The augmentation of the
FORS wavefunction can then also be made in terms of these
localized configurations. If one allows for single plus
double excitations of the orbitals z and h, the results are

very close to those discussed for the natural orbitals.

b. Calculation of dissociation curve Calculations

with wavefunctions of types 12 of Table 5.2 were performed
along the entire dissociation path. For comparison,
calculations were also performed with the corresponding SCF
and FORS wavefunctions. Total energies are tabulated in

Takle 5.3. These values were interpolated using the program
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Table 5.3. Calculated molecular energies of FH as
functions of the internuclear distance
R(bohr) Total Energies (hartree)
SCF FORS Augmented FORS
1.1 -99.7456 -99.7578 -99.8033
1.3 -99.9656 -98.9811 -100.0294
1.4 -100.0184 -100.0356 -100.0851
1.5 -100.0485 -100.08€76 -100.1179
1.55 -100.0574 -100.0775 -100.1285
1.5 -100.0631 -100.0843 -100.1358
1.65 -100.0662 -100.0885 -100.1404
1.7 -1006.0671 -100.6905 -100.1435
1.72 -100.0669 -100.0908 -100.1439
1.7325 -100.0666 -100.,0908 -100.1441
1.75 -100.0661 -100.0907 -100.1438
1.77 -100.0653 -100.0504 -100.1436
1.8 -100.0637 -100.0896 -100.1428
1.9 -100.0555 -100.0839 -100.1373
2.0 -100.0440 -100.0752 -100.1283
2.2 -100.0185 ~100.052¢9 ~100.1053
2.4 -39.9841 -1C0.0288 -100.0785
2.6 -99.9527 -100.0056 -100.0523
2.¢ -99.2083 -89.9758 -100.0161
3.2 -95.8687 -99.9529 -99.9858
3.5 -99.8341 ~-99.3367 -99.9632
¢.5 -59.7455 -99.9138 -55.5272
5.5 ~-99.6986 -99.9096 -99.9200
7.0 -95.9088 -85.9190
1000 -939.9088 -99.9088 -99.9188
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DIAPOTgO. The resulting potential curves are shown in
Figure 5.3 The FORS curve, as well as the augmented FORS

curve, unlike the SCF curve, treat the dissociation reaction

FH — F + H

qualitatively correctly. The program DIAPOT also yields the
spectroscopic constants, given in Table 5.4, via a Dunhanm
analysisgo. Previous thecretical resultsgl-94 are also
included for comparison. Only ab initio work which goes
beyond the Hartree-Fock method, and which is later than 1972,
is included. A bibliography of the older work may be found in
references 381 and 95.

It is seen that the FORS calculations predict the
spectroscopic constants reasonably well. This implies that
the FORS model describes the potential curve quite well near

the equilibrium distance. However, it fails to recover all

3. Augmented wavefunctions. Second selection method

In this approach, the procedure for selecting singly
excited configurations is developed by analogy with the

situation in the fluorine atom. In the latter, one can
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Table 5.4. Spectroscopic constants of FH

Method Reference Re D B w w

e e e eXe %e
{(bohr) (eV) (in 1/cm)

SCF 1.698 4,307 21.80 4432 76.42 0.802
FORS 1.733 4.954 20.54 4136 99.86 0.832
Augm. FORS 1.733 6.130 20.93 4216 86.07 0.757
PNO-CI 91 1.723 5.69 21.15 4252 85.9 0.762
CEPA 91 1.733 5.83 20.95 4169 90.4 0.787
FO-CI 92 1.739 5.88 20.80 4210

IEPA 93 1.756 4084

ovCe 94 6.18

Exp. 6 1.733 6.12 20.96 4138 89.88 0.798
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distribute the seven valence electrons in four different ways
among the four valence orbitals 2s, 2px, 2py and 2pz, as is
shown in Table 5.5 in the rows denoted as I, 1I, III, 1V,
which correspond to SAAPs with symmetries ZP(O), 2P(x), 2P(y),
2S respectively. If one wishes to construct additional
configurations to improve the wavefunction whose principal
component 1s the 2P(O) SAAP, then one can obtain such
additional SAAPs by making single substitutions in any one of
the "base configurations" 1 to IV, if only one chooses
external orbitals of appropriate symmetries. In Table 5.5,
appropriate svmmetries for these external orbitals are shown
in lines Ix, IIx, IIIx and IVx below those orbitals which they
are replacing. These singly excited configurations are indeed
the most important additions to the base configuration 2P(O).
HWe shall now deduce analogous singly excited
configurations for the FH molecule. Instead cf the one 2pz
orbital, we have now the two bond orbitals o and 0*. As base
configurations for excitations, we shall consider all those
FORS configurations which have at least six electrons in the
orbitals 2s, ZPx’ 2pY and the rest distributed among o and o*.
They are listed in Table 5.6 and denoted as Ila, Ib, Ic, Ila,
IIb, IXla, IIIb, IVa, IVb. In the last column, they are
identified with the SAAPs in Table 5.1 if possible. t may be
noted that thev include és which, after QB’ is the next most

important contributor in the FORS wavefunction. As in the
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Table 5.5. Orbital occupations for base configurations and
single excitations for F atom

SAAP
Valence 20 s b 4 y z Symmetry
I  oce. no. 2 2 2 1 2p(0)
Ix corr. orb. s',do X' ¥’ z' 2P(O)
II  occ. no. 2 2 1 2 2p(x)
, , 2
IIx corr. orb. dyz - z y P(0)
III oce. no. 2 1 2 2 2p(y)
IIIx corr. orb. d z’ - X' 2P(O)
XZ
IV  occ. no. 1 2 2 2 2g
IVx corr. orb. z" d a s’ ,d 2p(0)

Xz vz )
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Table 5.6. Orbital occupations of gage configurations and
single excitations for state of FH
FORS MO s p:4 vy o o FORS SAAP
Ia occ. no. 2 2 2 2 0 Ql
Ib occ. no. 2 2 2 1 1 QZ
Ic occ. no. 2 2 2 0 2 03
Ix corr. orb. o’ x' Yy’ o" o"
IIa occ. no. 2 2 1 2 1 --
IIb occ. no. 2 2 1 1 2 -
IIx corr. orb. y' ny o", y y
sz—y
IIIa occ. no. 2 1 2 2 1 --
IIIb occ. no. 2 1 2 1 2 --
hd " " + ’
IIIx corr. orb. x o, Sxy X X
8.z .2
X
IVa occ. no. 1 2 2 2 1 Q4
IVb occ. no. 1 2 2 1 2 QS
IVx corr. orb. o" x" y" o’ g’
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case of the fluorine atom, we have some base configurations
that do not have the right symmetry l£+, namely types Ila,
I1b, IIla and IIIb. Again, appropriate symmetries are
indicated in the rows Ix, IIx, IIIx and IVx for external
orbitals, so that the correct overall symmetry (lZ+)

results when they are substituted for the orbitals directly
above them, to form single excitations from the corresponding
base configurations. The three correlating o orbitals
correspond to the s’', d, and z’' orbitals in the atom, the two

0

degenerate n orbitals to the x’', y’ and dx d respectively,

z' “yz
and the § orbital to the remaining d orbitals in the atom.
Calculations were performed in which some or all of these
single excited SAAPs are added to all FORS configurations and
the results are listed in Table 5.7. It is apparent that the
results of this approach are comparable to those obtained by
the first selection procedure, if only single excitations are
taken into account. This is so because the contribution from
case 11 in Table 5.2 can be practically identified with that
of all doubly excited configurations: on the one hand, only
the bond orbitals o, o* are subject to double replacements
and, on the other hand, the contribution of the single
substitutions is very much smaller than that of the double
substitutions in case 11. Subtracting the value 0.233 of case

11 from the value 1.169 of case 12, one obtains 0.936, which

differs only by 0.13 eV from the final value of Table 5.7.



170

Table 5.7. Augmented FORS calculations with selected
excitations for dissociation energy of FH.
Selection II
Excitations No. of
f rom additional E at KR ® E at R % AE AE-AE
SAAPs (hartreg&) (hartree) (eV) (e)®
FORS 0 -100.0908 -99.9088 4.954 0
Is 12 -100.1017 -99.9179 5.001 0.047
In i -100.1274 -99.9095 5.927 0.973
Io 6 -100.0909 -99.909°9 4.955 0.001
II + IIls 16 -100.09%7 -99.9208 4.760 -0.194
II + IIlv 20 -100.0957 -99.9091 4,987 0.033
II + Illo (=1Im)
IVs € -100.0913 -99.9097 4.941 -0.013
IVTy (=II+IIIs?
IVo (=Is)
all of above 76 -100.1424 ~89.9309 5.755 0.801
® R, = 1.7325 bohrs; R_ = 1000 bohrs.
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C. The Flucrine Molecule

l. FORS wavefunction

The ground state of Fz is a 12; state with an
equilibrium distance of Re = 2.68 bohr. All calculations were
performed with an unscaled (l4s,7p,2d4 / 4s5,3p,2d) basis of
even-tempered primitives with polarization exponents of gd
= 0.36 and 1.26. The calculations were simplified by adapting
the atomic orbitals to g and u symmetry. The SCF and FORS

calculations yield the following results:

E(R ) E(Rm) AE

(hart?ee) {hartree) (eV)

SCF -198.7641 -198.8156 -1.40
FORS -198.8443 -198.8156 0.78

The experimental binding energy is 1.66 eV. Although the FORS
calculation is still 0.9 eV short of the experimental value,
it does in fact recover 71i% of the correlation ntribution
the bindi
if the natural molecular orbitals, which are syametry-
adapted, are used to construct configurations, then the Full

1o+

Reaction Space for the Zé symmetry is spanned by the ten

SAAPs listed in the first column of Table 5.8. The second
column contains the expansion coefficients of the FORS

wavefunction for the ground state at the equilibrium distance.
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Table 5.8. FORS wavefunction for Fz

SAAP Coefficient
= 21220%20%x%x2y2y%302 0.964860
Ql A £kgku20g20uxux uychgeo}
- 2,25,25,2.2, 2.2 25,2 -0.251894
02 A {kgkuZOgZOUXuxgyuygBUUQO} 0.
&. = A {(k’k?20%x%x%y2y?30%2¢ 30 0} -0.019690
3 gu gugug g u udo
2,2,.2.2._2_2 2, 2
= .048444
Q4 a {kgkuzouxuxgyuygBGUZUgBUgOO} 0.0
?_ = A [k’k’20%202x2x%7%30%30%0 1 -0.028997
5 gu g uu gyu g udo
2,2, 2, 2.2 .2 2 2_ 12
= -0.007673
QS A {kgkuZGgZGuxuyuygBGqBGUGO)
_ 2,202, 2.2.2.24 2, 2 -0.028997
¢, = A {kgkuZOgZquuxgygBGgBOueo} 0.
2.2, 2, 2.2 2. 2, 2, 2
= -0.007673
08 A {kngZGgZOuxgyuy930g3cu®0}
8. = A frxlu?20%x2x%y2y?30%35%0 3 ~0.025670
9 gu g ugug g ud
& = 3 [xlk%20%x%x%y2y%30%30%0 3 ~0.020033
10 g’u  uwug'ug g ud
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Although the configuration generating orbitals used in
Table 5.8 extend over both atoms, it is still possible to

distinguish between inner shell, lone pair and bonding

orbitals. The MCs kg, ku are the g and u linear combinations

of the inner shell orbitals and the MOs Zog, Zau, g’ xu, yg,

Y, are the g and u linear combinations of the lone pair 2s,

X

pr, Zpy orbitals on the two atoms. This is apparent from the
expansion coefficients in Table 5.8, and is confirmed by an
examination of the orbitalsl4. The orbitals 30 and 30u
correspond to the bonding and antibonding orbitals o and o* of
FH. It is therefore apparent that the configurations of Table

5.8 could alsc be expressed ir. terms of the left and right

lone pair orbitals

sp = (sg + su)/ﬂ' sg = (sg - sunrz
X = (xg + xu)/JZ xR = (xg - xu)/42
Y = (yg + y /42 Vg = (yg - yu)/ﬁ‘

Because of the

(T

oss of

T

he g/u svmmetrvy, sixteen SAAPs.

generated from

oY

hese orbitals are needed to span the Full

Reaction Space.

2. Augmented wavefunctions. First selection method
This approach is analogous to the one outlined in Section

V.B.2a for FH. The difference is that, in FZ' we have twice
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as many lone pair orbitals as in FH. As in FH, we consider

only single excitations out of the six lone pair MOs 20g, Zou.

xg, X, yg, Y, but include -single and double excitations out
of the bonding MOs cg and AT In contrast to FH, the basic
pairing process during bond formation in Fz is described by
two SAAPs only, namely Ql and @2 which correspond to ¢1 and Q3
in FH. The SAAP corresponding to QZ of FH has u symmetry; it
may be noticed that, even in FH, it has a small coefficient.
Thus, by analogy to FZ' we consider here only excitations of
the aforementioned kinds from the configurations Ql and °2‘
Since there are more lone pair orbitals to be correlated, it
can be expected that more external orbitals will be reguired
before saturation occurs.

As in the case of FH, calculations were performed using
certain subgroups of configurations as well as all
configurations. The results at the equilibrium distance are
listed in Table 5.9. They are identified by a notation
similar to that used in Table 5.2. The conclusions which
those found for FH. Again, th
types of excitations are nearly additive.

In particular one observes, as in FH, that single

excitations from lone pair type FORS 7 orbitais to external =

orbitals provide by far the largest contributicns to the

correlation part of the dissociation energyv. bevond the FORS




Table 5.9.

Augmented FORS calculations with selected

excitations for dissociation energy of F
Selection I

9°

additional E at R® Eat R®  4E  aE-AE
Case Excitations SAAPs (hartreeY (hartre®) (eV) (en)®
1 0 -198.8443 -198.8178 0.720 0
2 g 8 -198.858% -198.835% 0.625 -0.095
3 g 12 -198.8646 -198.8359 0.782 0.061
4 g' i6 -198.8667 -198.8359 0.838 6.117
5 ! 16 -198.8859 -198.8183 1.814 1.093
6 24 -158.8864 -198.8193 1.825 1.104
7 32 -198.8868 -198.8194 1.834 1.114
8 4 -198.8453 -198.8179 0.746 0.025
9 7 -198.8464 -198.8179 0.777 0.057
10 10 -198.8453 -198.8179 0.747 0.9027
i1 4 3 ) c.721 0.001
12 8 -198.8460 -198.8178 0.766 0.046
13 12 -198.8460 -198.8178 0.767 0.047
14 8 -198.8469 -198.8179 0.791 0.070
is o~20_',lo0 15 -198.8482 -198.8179 0.8251 0.105

i

1.732285 bohr;

1000 bchr.
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continued
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Case Excitations

No.

additional E at R.® E at R 2
SAAPs

(hartree?

(hartreg)

AE AE—AEO
(eV) (eV)

le 0*20g',20u', 22

VA
u

7 —2
1l s cg

w27
u

o220

27
u

18 s—20
g

T2
u

o220

27w
u

2

’

’

¢

4

’

51

-
)
Q

s

=t
]
-

,20. ' ; 70
u

-198.8485

-198.9082

-198.9103

-198.8179

-198.8375

-198.8377

0.833 0.113

1,923 1.203

1.977 1.257
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model. The most likely explanation of this remarkable fact
seems to be that the ¥ orbitals in the neutral FORS
configurations (FH, FF) would like to have somewhat different
shape than those in the ionic FORS configurations (F H',
F'F+), and that the addition of singly excited configurations
approximates this modification to first order.

Unfortunately, in FZ the inclusion of all additional
configurations leads to a dissociation energy which overshoots
the experimental value. The included configurations are

therefeore more effective for the molecule Fz than for the F

atom.

3. Augmented wavefunctions. Second selection method

a. Calculation at the equilibrium distance This

approach corresponds to the second selection procedure
described for FH. In analogy to Section V.B.3, we consider
here as base configurations for single excitations all those

SARAPs in which the orbital

1=

w

ch, Zou, xg, Y yg, Yar og and

o, are at least occupied by fifteen electrons. There are
fifteen SAAPs of this kind, namely Ql’ °2’ Q4, QS of Table 5.8
and the SAAPs Qll to 021 listed in Table 5.10 which do not

have ‘Z; symmetry. Table 5.11 for F2 corresponds to Table
5.0 for FH. It lists the {fifteen base configurations and
relates their types tc those of Tables 5.5 and 5.6. Below

each base configuration are given the appropriate symmetries

for external orbitals which will yield singly excited SAAPs of
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Table 5.10. Some FORS configurations which have

vanishing coefficients in the ground
state of F2

SAAP
Qll = A {ké 3 3203 i §y2y§30g3oueo}
@12 = A {k; 3 ;20§x3 éyi ;ygBGUQO}
Ql3 = A {ké 3 é 3 ixéyiBoiygBo OO}
2., = A {ké 3203203 iyiyé éxg3ou®o}
015 = A {ké 3 03203 §y2y5303xg30g@0}
2, = A {k; %20 ;203 x2x ;y§3c§yu30u00}
2., = A {ké 3203203 xlx §y§30iyu3ogeo}
¢18 = A {ks 3 ;“ 3 §y3y§30;xu3c @ 3
3.5 = A {ké 220 ; ;y y§30§xu3cge 3
2 = 2 {kékiz-g--ixg Zy 33032%3%@03
@21 = A { ; 3202x §y2y230 20 30 O 1%
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Table 5.11. Orbital occupations for base configurations and

1o+

single excitations for Zg of F2 molecule

Occ. No. / Type of Corr. Orb.

Type SAAP ch Zcu I"ux lﬂuy lng lﬂgy 30g 3ou
I 1 2 2 2 2 2 2 2 o
a b c d e f a
2 2 2 2 2 2 2 0 2
a b c d e f b
11 2 2 2 2 2 2 1 1
b a e £ c d
Iig 12 2 2 2 2 2 1 2 1
d f g a,h i b,] d f
i3 2 2 2 2 2 1 1 2
f d i b,j g a,h £ d
Iiig ia 2 2 2 2 1 2 2 1
c e a,h g bh,i c e
15 2 2 2 1 2 1 2
e o) b,i] i a.h e c
Iiu 16 2 2 2 1 2 2 2 1
f d i b,J f d
17 2 2 2 1 2 2 1 2

[#9

+h
Ue]
fu
o8
(o
L)
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Table 5.11. continued
Occ. No. / Type of Corr. Orb.
Type SAAP Zog Zou l"ux l"uy 1ng lwgy 30g 30u
IIIu 18 2 2 1 2 2 2 2 1
e c b,3 e c
19 2 2 1 2 2 2 1 2
c e a,h c e
Iv 4 2 1 2 2 2 2 2 1
a. b c d e f a b
a) 1 2 2 2 2 2 1 2
a b c d e £ a b
20 2 1 2 2 2 2 1l 2
a e f C d b a
21 i 2 2 2 2 2 2 1
b e £ c d b a
Note: The blank spaces in the table

from that orbital will result

indicate that excita

-_—s =

tio
in configurations already
ernal

generated from other SAAPs in the same group.
abbreviated as follows:

orbitals are

a=oc H
g

c = ﬂxu’ ;

g = Sg(xy) ;

b

d

-
4

e

xg'
Su(xy)

14

3

n

Ext 12

’

L H
yg

2 .2
Su(x ¥
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1z; symmetry by single replacement of the corresponding base

orbitals.

Again calculations are performed in which some or all of
these singly excited SAAPs are added to all FORS
configurations. The results are listed in Table 5.12. As in
the previous cases, the effect of the different types of
contributions are seen to be approximately additive. As was
the case in FH, the overall result (1.13 eV) obtained by this
approach, which considers single excitations only, agrees with
the effect of all single excitations in the first approach

(case 18 minus case 16 of Table 5.9: 1.257-0.113=1.144 eV).

b. Calculation of dissociation curve Calculations of

type 8 of Table 5.12 are performed along the entire
dissociation curve. The results of these calculations as well
as those of SCF and FORS calculations are listed in Table
5.13. With the help of the DIAPOT program’- these energies
are interpolated and spectroscopic ceonstants extracted via a
Dunham aﬁalysisgl. The disscciation curves are plotted in
Figure 5.4. The spectroscopic constants are listed in Table
5.14 together with previous theoretical resu1t596—97.

The SCF wavefunction fails to predict binding and the
minimum geometry obtained by fitting the curve is 0.15 bohr

too short. The minimum on the FORS potential curve is (.10

bohr too long and the dissociation energy calculated is too
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Table 5.12. Augnmented FORS calculations with selected
excitations for dissociation energy of F
Selection II
Type Nq. a a
of additional E at R E at R AE AE-AE
excitations SAAPs (hartre&) (hartre®) (eV) (eV)®
1 FORS 0 -158.8443 -198.8178 0.720 0
2 Is 15 -198.8667 -198.8377 0.790 0.070
3 In 32 -198.8869 -198.812%4 1.837 1.117
¢ Io 4 ~-198.8443 -198.8179 0.720 0
5 1Is 64 -198.8674 -198.8417 0.700 -0.020
6 IIn 64 -198.8485 -198.8184 0.737 0.017
IIo(=1Im)
7 1I1is 16 -198.8459 -198.8194 0.721 0.001
I1In(=11s)
I1Ic(=1s)
B all of above 196 -198.9294 -198.8614 1.850 1.130
&R = 000 bohr.

e

1.7325 bohr; Rw = 1
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Table 5.132. Calczulated energies for F2
Total Energies (hartree)
R{boht) SCF FORS Augmented FORS
l.4 -197.1045 -187.11582 -197.1684
1.7 -198. 2264 ~-198.2457 -198.3121
2.0 -198.6266 -198.658¢0 -198.7384
2.z -198.7273 -198.7639 -198.8560
2.4 -198.7649 -198.8214 -198.909z
2.5 ~-188.7697 -198.8341 -198.9217
2.6 ~198.7683 -1%8.8414 -198.9276
2.5 -198.7€59 -1¢8.8435 -198.9291
2.68 -198.7640 -198.8443 -158.9294
2.7 -188.7626 -198.8448 -198.929¢%
2.72 -198.7610 -198.8451 -198.929¢0
2.75 -198.7584 -198.8454 -198.9286
2.8 ~198.75356 -198.8455 -198.9275
2.85 -198.7482 -198.8452 -198.9258
2.5 ~198.7425 -198.8446 -198.9242
3.1 -198.7166 -198.8401 -158.9134
2.2 -198.6889 -198.8346 -198.9014
4.0 -198.6010 -198.8217 -198.8719
5.0 -188.5199 -198.8178 -198.8624
7.0 -198.4517 -198.8177 -158.8610
10.C -198.4215 -198.,8178 -198.8617
1000 -198.8156 -128.8178 -198.8614
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Table 5.14. Spectroscopic constants of F

2
Method Reference Re De Be W WeXg %
(bohr)} (eV) (in 1/cm)

SCF 2.528 0.9917 1248.8 6.69 0.0083
FORS 2.789 0.753 0.8149 702.0 15.80 0.0182
Augm. FORS 2.694 1.854 0.8734 943.,2 10.87 0.0116
ovC 96 2.67 i.67 0.88 942 0.0160
IEPA 97 2.781 795 16

CEPA 97 2.666 945 14

PNO-CI 97 2.606 1150 10

Exp. 6 2.68 1.658 0.8%02 916.6 11.24 0.0138
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small by 0.9 eV. Augmentation of the FORS wavefunction
greatly improves the results: the predicted equilibrium
distance is within 0.01 bohr of the experimental value and the
dissociation energy is within 0.2 eV of the experimental
result. The good prediction of the spectroscopic constants
indicates that the wavefunction describes the energy curve
adequately near the equilibrium. The overestimation of the
dissociation energy for the augmented FORS curve implies that
the wavefunction recovers more correlation near the
equilibrium distance than for the dissociated atoms. Fine

tuning of the selection scheme is required to overcome this

shortcoming.

D. Conclusion
The ab initio augmentation of the FORS model discussed in

this section substantially improves its performance in
predicting dissociation energies. It can therefore be
concluded that single excitations of lone pair type orbitals
and single plus double excitations of bonding orbitals
generate those configurations which, together with the Full
Reaction Space, closely describe that part of the eiectron
correlation which changes upon dissociation. It can also be
concluded that MCSCF optimization of a few external orbitals
is an adequate substitute for the inclusion of all possible

configurations of the corresponding type. As a consegquence
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the number of augmenting configurations containing external
orbitals is kept quite low. It is somewhat disappointing
that in F2 there is still left an error of about 0.1 to 0.2

eV, i.e. up to 5 kcal/mole, in the binding energies.
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